Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}=-150
Ikkala tarafdan 150 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x^{2}=\frac{-150}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=-25
-25 ni olish uchun -150 ni 6 ga bo‘ling.
x=5i x=-5i
Tenglama yechildi.
6x^{2}+150=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\times 150}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 0 ni b va 150 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 6\times 150}}{2\times 6}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-24\times 150}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-3600}}{2\times 6}
-24 ni 150 marotabaga ko'paytirish.
x=\frac{0±60i}{2\times 6}
-3600 ning kvadrat ildizini chiqarish.
x=\frac{0±60i}{12}
2 ni 6 marotabaga ko'paytirish.
x=5i
x=\frac{0±60i}{12} tenglamasini yeching, bunda ± musbat.
x=-5i
x=\frac{0±60i}{12} tenglamasini yeching, bunda ± manfiy.
x=5i x=-5i
Tenglama yechildi.