x uchun yechish
x=\sqrt{55}+6\approx 13,416198487
x=6-\sqrt{55}\approx -1,416198487
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x^{2}+12x+14-7x^{2}=-5
Ikkala tarafdan 7x^{2} ni ayirish.
-x^{2}+12x+14=-5
-x^{2} ni olish uchun 6x^{2} va -7x^{2} ni birlashtirish.
-x^{2}+12x+14+5=0
5 ni ikki tarafga qo’shing.
-x^{2}+12x+19=0
19 olish uchun 14 va 5'ni qo'shing.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\times 19}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 12 ni b va 19 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\left(-1\right)\times 19}}{2\left(-1\right)}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144+4\times 19}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+76}}{2\left(-1\right)}
4 ni 19 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{220}}{2\left(-1\right)}
144 ni 76 ga qo'shish.
x=\frac{-12±2\sqrt{55}}{2\left(-1\right)}
220 ning kvadrat ildizini chiqarish.
x=\frac{-12±2\sqrt{55}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{55}-12}{-2}
x=\frac{-12±2\sqrt{55}}{-2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{55} ga qo'shish.
x=6-\sqrt{55}
-12+2\sqrt{55} ni -2 ga bo'lish.
x=\frac{-2\sqrt{55}-12}{-2}
x=\frac{-12±2\sqrt{55}}{-2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{55} ni ayirish.
x=\sqrt{55}+6
-12-2\sqrt{55} ni -2 ga bo'lish.
x=6-\sqrt{55} x=\sqrt{55}+6
Tenglama yechildi.
6x^{2}+12x+14-7x^{2}=-5
Ikkala tarafdan 7x^{2} ni ayirish.
-x^{2}+12x+14=-5
-x^{2} ni olish uchun 6x^{2} va -7x^{2} ni birlashtirish.
-x^{2}+12x=-5-14
Ikkala tarafdan 14 ni ayirish.
-x^{2}+12x=-19
-19 olish uchun -5 dan 14 ni ayirish.
\frac{-x^{2}+12x}{-1}=-\frac{19}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{12}{-1}x=-\frac{19}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-12x=-\frac{19}{-1}
12 ni -1 ga bo'lish.
x^{2}-12x=19
-19 ni -1 ga bo'lish.
x^{2}-12x+\left(-6\right)^{2}=19+\left(-6\right)^{2}
-12 ni bo‘lish, x shartining koeffitsienti, 2 ga -6 olish uchun. Keyin, -6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-12x+36=19+36
-6 kvadratini chiqarish.
x^{2}-12x+36=55
19 ni 36 ga qo'shish.
\left(x-6\right)^{2}=55
x^{2}-12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-6\right)^{2}}=\sqrt{55}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-6=\sqrt{55} x-6=-\sqrt{55}
Qisqartirish.
x=\sqrt{55}+6 x=6-\sqrt{55}
6 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}