Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}+\frac{5}{3}x-21=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\frac{5}{3}±\sqrt{\left(\frac{5}{3}\right)^{2}-4\times 6\left(-21\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, \frac{5}{3} ni b va -21 ni c bilan almashtiring.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}-4\times 6\left(-21\right)}}{2\times 6}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{3} kvadratini chiqarish.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}-24\left(-21\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}+504}}{2\times 6}
-24 ni -21 marotabaga ko'paytirish.
x=\frac{-\frac{5}{3}±\sqrt{\frac{4561}{9}}}{2\times 6}
\frac{25}{9} ni 504 ga qo'shish.
x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{2\times 6}
\frac{4561}{9} ning kvadrat ildizini chiqarish.
x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{\sqrt{4561}-5}{3\times 12}
x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{12} tenglamasini yeching, bunda ± musbat. -\frac{5}{3} ni \frac{\sqrt{4561}}{3} ga qo'shish.
x=\frac{\sqrt{4561}-5}{36}
\frac{-5+\sqrt{4561}}{3} ni 12 ga bo'lish.
x=\frac{-\sqrt{4561}-5}{3\times 12}
x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{12} tenglamasini yeching, bunda ± manfiy. -\frac{5}{3} dan \frac{\sqrt{4561}}{3} ni ayirish.
x=\frac{-\sqrt{4561}-5}{36}
\frac{-5-\sqrt{4561}}{3} ni 12 ga bo'lish.
x=\frac{\sqrt{4561}-5}{36} x=\frac{-\sqrt{4561}-5}{36}
Tenglama yechildi.
6x^{2}+\frac{5}{3}x-21=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}+\frac{5}{3}x-21-\left(-21\right)=-\left(-21\right)
21 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}+\frac{5}{3}x=-\left(-21\right)
O‘zidan -21 ayirilsa 0 qoladi.
6x^{2}+\frac{5}{3}x=21
0 dan -21 ni ayirish.
\frac{6x^{2}+\frac{5}{3}x}{6}=\frac{21}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{\frac{5}{3}}{6}x=\frac{21}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{18}x=\frac{21}{6}
\frac{5}{3} ni 6 ga bo'lish.
x^{2}+\frac{5}{18}x=\frac{7}{2}
\frac{21}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{5}{18}x+\left(\frac{5}{36}\right)^{2}=\frac{7}{2}+\left(\frac{5}{36}\right)^{2}
\frac{5}{18} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{36} olish uchun. Keyin, \frac{5}{36} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{18}x+\frac{25}{1296}=\frac{7}{2}+\frac{25}{1296}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{36} kvadratini chiqarish.
x^{2}+\frac{5}{18}x+\frac{25}{1296}=\frac{4561}{1296}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{7}{2} ni \frac{25}{1296} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{5}{36}\right)^{2}=\frac{4561}{1296}
x^{2}+\frac{5}{18}x+\frac{25}{1296} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{36}\right)^{2}}=\sqrt{\frac{4561}{1296}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{36}=\frac{\sqrt{4561}}{36} x+\frac{5}{36}=-\frac{\sqrt{4561}}{36}
Qisqartirish.
x=\frac{\sqrt{4561}-5}{36} x=\frac{-\sqrt{4561}-5}{36}
Tenglamaning ikkala tarafidan \frac{5}{36} ni ayirish.