Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6\left(w^{2}-11w-12\right)
6 omili.
a+b=-11 ab=1\left(-12\right)=-12
Hisoblang: w^{2}-11w-12. Ifodani guruhlash orqali faktorlang. Avvalo, ifoda w^{2}+aw+bw-12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-12 2,-6 3,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-12=-11 2-6=-4 3-4=-1
Har bir juftlik yigʻindisini hisoblang.
a=-12 b=1
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(w^{2}-12w\right)+\left(w-12\right)
w^{2}-11w-12 ni \left(w^{2}-12w\right)+\left(w-12\right) sifatida qaytadan yozish.
w\left(w-12\right)+w-12
w^{2}-12w ichida w ni ajrating.
\left(w-12\right)\left(w+1\right)
Distributiv funktsiyasidan foydalangan holda w-12 umumiy terminini chiqaring.
6\left(w-12\right)\left(w+1\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
6w^{2}-66w-72=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
w=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 6\left(-72\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-66\right)±\sqrt{4356-4\times 6\left(-72\right)}}{2\times 6}
-66 kvadratini chiqarish.
w=\frac{-\left(-66\right)±\sqrt{4356-24\left(-72\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
w=\frac{-\left(-66\right)±\sqrt{4356+1728}}{2\times 6}
-24 ni -72 marotabaga ko'paytirish.
w=\frac{-\left(-66\right)±\sqrt{6084}}{2\times 6}
4356 ni 1728 ga qo'shish.
w=\frac{-\left(-66\right)±78}{2\times 6}
6084 ning kvadrat ildizini chiqarish.
w=\frac{66±78}{2\times 6}
-66 ning teskarisi 66 ga teng.
w=\frac{66±78}{12}
2 ni 6 marotabaga ko'paytirish.
w=\frac{144}{12}
w=\frac{66±78}{12} tenglamasini yeching, bunda ± musbat. 66 ni 78 ga qo'shish.
w=12
144 ni 12 ga bo'lish.
w=-\frac{12}{12}
w=\frac{66±78}{12} tenglamasini yeching, bunda ± manfiy. 66 dan 78 ni ayirish.
w=-1
-12 ni 12 ga bo'lish.
6w^{2}-66w-72=6\left(w-12\right)\left(w-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 12 ga va x_{2} uchun -1 ga bo‘ling.
6w^{2}-66w-72=6\left(w-12\right)\left(w+1\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.