w uchun yechish
w=3
w=0
Baham ko'rish
Klipbordga nusxa olish
w\left(6w-18\right)=0
w omili.
w=0 w=3
Tenglamani yechish uchun w=0 va 6w-18=0 ni yeching.
6w^{2}-18w=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -18 ni b va 0 ni c bilan almashtiring.
w=\frac{-\left(-18\right)±18}{2\times 6}
\left(-18\right)^{2} ning kvadrat ildizini chiqarish.
w=\frac{18±18}{2\times 6}
-18 ning teskarisi 18 ga teng.
w=\frac{18±18}{12}
2 ni 6 marotabaga ko'paytirish.
w=\frac{36}{12}
w=\frac{18±18}{12} tenglamasini yeching, bunda ± musbat. 18 ni 18 ga qo'shish.
w=3
36 ni 12 ga bo'lish.
w=\frac{0}{12}
w=\frac{18±18}{12} tenglamasini yeching, bunda ± manfiy. 18 dan 18 ni ayirish.
w=0
0 ni 12 ga bo'lish.
w=3 w=0
Tenglama yechildi.
6w^{2}-18w=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{6w^{2}-18w}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
w^{2}+\left(-\frac{18}{6}\right)w=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
w^{2}-3w=\frac{0}{6}
-18 ni 6 ga bo'lish.
w^{2}-3w=0
0 ni 6 ga bo'lish.
w^{2}-3w+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}-3w+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(w-\frac{3}{2}\right)^{2}=\frac{9}{4}
w^{2}-3w+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w-\frac{3}{2}=\frac{3}{2} w-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
w=3 w=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}