Asosiy tarkibga oʻtish
v uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6v^{2}+5v-3=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
v=\frac{-5±\sqrt{5^{2}-4\times 6\left(-3\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 5 ni b va -3 ni c bilan almashtiring.
v=\frac{-5±\sqrt{25-4\times 6\left(-3\right)}}{2\times 6}
5 kvadratini chiqarish.
v=\frac{-5±\sqrt{25-24\left(-3\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
v=\frac{-5±\sqrt{25+72}}{2\times 6}
-24 ni -3 marotabaga ko'paytirish.
v=\frac{-5±\sqrt{97}}{2\times 6}
25 ni 72 ga qo'shish.
v=\frac{-5±\sqrt{97}}{12}
2 ni 6 marotabaga ko'paytirish.
v=\frac{\sqrt{97}-5}{12}
v=\frac{-5±\sqrt{97}}{12} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{97} ga qo'shish.
v=\frac{-\sqrt{97}-5}{12}
v=\frac{-5±\sqrt{97}}{12} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{97} ni ayirish.
v=\frac{\sqrt{97}-5}{12} v=\frac{-\sqrt{97}-5}{12}
Tenglama yechildi.
6v^{2}+5v-3=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6v^{2}+5v-3-\left(-3\right)=-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
6v^{2}+5v=-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
6v^{2}+5v=3
0 dan -3 ni ayirish.
\frac{6v^{2}+5v}{6}=\frac{3}{6}
Ikki tarafini 6 ga bo‘ling.
v^{2}+\frac{5}{6}v=\frac{3}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
v^{2}+\frac{5}{6}v=\frac{1}{2}
\frac{3}{6} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
v^{2}+\frac{5}{6}v+\left(\frac{5}{12}\right)^{2}=\frac{1}{2}+\left(\frac{5}{12}\right)^{2}
\frac{5}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{12} olish uchun. Keyin, \frac{5}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
v^{2}+\frac{5}{6}v+\frac{25}{144}=\frac{1}{2}+\frac{25}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{12} kvadratini chiqarish.
v^{2}+\frac{5}{6}v+\frac{25}{144}=\frac{97}{144}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{25}{144} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(v+\frac{5}{12}\right)^{2}=\frac{97}{144}
v^{2}+\frac{5}{6}v+\frac{25}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(v+\frac{5}{12}\right)^{2}}=\sqrt{\frac{97}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
v+\frac{5}{12}=\frac{\sqrt{97}}{12} v+\frac{5}{12}=-\frac{\sqrt{97}}{12}
Qisqartirish.
v=\frac{\sqrt{97}-5}{12} v=\frac{-\sqrt{97}-5}{12}
Tenglamaning ikkala tarafidan \frac{5}{12} ni ayirish.