u uchun yechish
u=4
u=0
Baham ko'rish
Klipbordga nusxa olish
u\left(6u-24\right)=0
u omili.
u=0 u=4
Tenglamani yechish uchun u=0 va 6u-24=0 ni yeching.
6u^{2}-24u=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
u=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, -24 ni b va 0 ni c bilan almashtiring.
u=\frac{-\left(-24\right)±24}{2\times 6}
\left(-24\right)^{2} ning kvadrat ildizini chiqarish.
u=\frac{24±24}{2\times 6}
-24 ning teskarisi 24 ga teng.
u=\frac{24±24}{12}
2 ni 6 marotabaga ko'paytirish.
u=\frac{48}{12}
u=\frac{24±24}{12} tenglamasini yeching, bunda ± musbat. 24 ni 24 ga qo'shish.
u=4
48 ni 12 ga bo'lish.
u=\frac{0}{12}
u=\frac{24±24}{12} tenglamasini yeching, bunda ± manfiy. 24 dan 24 ni ayirish.
u=0
0 ni 12 ga bo'lish.
u=4 u=0
Tenglama yechildi.
6u^{2}-24u=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{6u^{2}-24u}{6}=\frac{0}{6}
Ikki tarafini 6 ga bo‘ling.
u^{2}+\left(-\frac{24}{6}\right)u=\frac{0}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
u^{2}-4u=\frac{0}{6}
-24 ni 6 ga bo'lish.
u^{2}-4u=0
0 ni 6 ga bo'lish.
u^{2}-4u+\left(-2\right)^{2}=\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
u^{2}-4u+4=4
-2 kvadratini chiqarish.
\left(u-2\right)^{2}=4
u^{2}-4u+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(u-2\right)^{2}}=\sqrt{4}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
u-2=2 u-2=-2
Qisqartirish.
u=4 u=0
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}