Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6u^{2}+24u-36=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
u=\frac{-24±\sqrt{24^{2}-4\times 6\left(-36\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
u=\frac{-24±\sqrt{576-4\times 6\left(-36\right)}}{2\times 6}
24 kvadratini chiqarish.
u=\frac{-24±\sqrt{576-24\left(-36\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
u=\frac{-24±\sqrt{576+864}}{2\times 6}
-24 ni -36 marotabaga ko'paytirish.
u=\frac{-24±\sqrt{1440}}{2\times 6}
576 ni 864 ga qo'shish.
u=\frac{-24±12\sqrt{10}}{2\times 6}
1440 ning kvadrat ildizini chiqarish.
u=\frac{-24±12\sqrt{10}}{12}
2 ni 6 marotabaga ko'paytirish.
u=\frac{12\sqrt{10}-24}{12}
u=\frac{-24±12\sqrt{10}}{12} tenglamasini yeching, bunda ± musbat. -24 ni 12\sqrt{10} ga qo'shish.
u=\sqrt{10}-2
-24+12\sqrt{10} ni 12 ga bo'lish.
u=\frac{-12\sqrt{10}-24}{12}
u=\frac{-24±12\sqrt{10}}{12} tenglamasini yeching, bunda ± manfiy. -24 dan 12\sqrt{10} ni ayirish.
u=-\sqrt{10}-2
-24-12\sqrt{10} ni 12 ga bo'lish.
6u^{2}+24u-36=6\left(u-\left(\sqrt{10}-2\right)\right)\left(u-\left(-\sqrt{10}-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -2+\sqrt{10} ga va x_{2} uchun -2-\sqrt{10} ga bo‘ling.