Omil
\left(2a-5\right)\left(3a+2\right)
Baholash
\left(2a-5\right)\left(3a+2\right)
Viktorina
Polynomial
6 a ^ { 2 } - 11 a - 10
Baham ko'rish
Klipbordga nusxa olish
p+q=-11 pq=6\left(-10\right)=-60
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 6a^{2}+pa+qa-10 sifatida qayta yozilishi kerak. p va q ni topish uchun yechiladigan tizimni sozlang.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
pq manfiy boʻlganda, p va q da qarama-qarshi belgilar bor. p+q manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -60-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Har bir juftlik yigʻindisini hisoblang.
p=-15 q=4
Yechim – -11 yigʻindisini beruvchi juftlik.
\left(6a^{2}-15a\right)+\left(4a-10\right)
6a^{2}-11a-10 ni \left(6a^{2}-15a\right)+\left(4a-10\right) sifatida qaytadan yozish.
3a\left(2a-5\right)+2\left(2a-5\right)
Birinchi guruhda 3a ni va ikkinchi guruhda 2 ni faktordan chiqaring.
\left(2a-5\right)\left(3a+2\right)
Distributiv funktsiyasidan foydalangan holda 2a-5 umumiy terminini chiqaring.
6a^{2}-11a-10=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 6\left(-10\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-11\right)±\sqrt{121-4\times 6\left(-10\right)}}{2\times 6}
-11 kvadratini chiqarish.
a=\frac{-\left(-11\right)±\sqrt{121-24\left(-10\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
a=\frac{-\left(-11\right)±\sqrt{121+240}}{2\times 6}
-24 ni -10 marotabaga ko'paytirish.
a=\frac{-\left(-11\right)±\sqrt{361}}{2\times 6}
121 ni 240 ga qo'shish.
a=\frac{-\left(-11\right)±19}{2\times 6}
361 ning kvadrat ildizini chiqarish.
a=\frac{11±19}{2\times 6}
-11 ning teskarisi 11 ga teng.
a=\frac{11±19}{12}
2 ni 6 marotabaga ko'paytirish.
a=\frac{30}{12}
a=\frac{11±19}{12} tenglamasini yeching, bunda ± musbat. 11 ni 19 ga qo'shish.
a=\frac{5}{2}
\frac{30}{12} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a=-\frac{8}{12}
a=\frac{11±19}{12} tenglamasini yeching, bunda ± manfiy. 11 dan 19 ni ayirish.
a=-\frac{2}{3}
\frac{-8}{12} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
6a^{2}-11a-10=6\left(a-\frac{5}{2}\right)\left(a-\left(-\frac{2}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5}{2} ga va x_{2} uchun -\frac{2}{3} ga bo‘ling.
6a^{2}-11a-10=6\left(a-\frac{5}{2}\right)\left(a+\frac{2}{3}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
6a^{2}-11a-10=6\times \frac{2a-5}{2}\left(a+\frac{2}{3}\right)
Umumiy maxrajni topib va suratlarni ayirib \frac{5}{2} ni a dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
6a^{2}-11a-10=6\times \frac{2a-5}{2}\times \frac{3a+2}{3}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{2}{3} ni a ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
6a^{2}-11a-10=6\times \frac{\left(2a-5\right)\left(3a+2\right)}{2\times 3}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali \frac{2a-5}{2} ni \frac{3a+2}{3} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
6a^{2}-11a-10=6\times \frac{\left(2a-5\right)\left(3a+2\right)}{6}
2 ni 3 marotabaga ko'paytirish.
6a^{2}-11a-10=\left(2a-5\right)\left(3a+2\right)
6 va 6 ichida eng katta umumiy 6 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}