Baholash
\frac{36-7a}{6-a}
a ga nisbatan hosilani topish
-\frac{6}{\left(a-6\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
6-\frac{a}{6-a}
a\times \frac{1}{6-a} ni yagona kasrga aylantiring.
\frac{6\left(6-a\right)}{6-a}-\frac{a}{6-a}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6 ni \frac{6-a}{6-a} marotabaga ko'paytirish.
\frac{6\left(6-a\right)-a}{6-a}
\frac{6\left(6-a\right)}{6-a} va \frac{a}{6-a} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{36-6a-a}{6-a}
6\left(6-a\right)-a ichidagi ko‘paytirishlarni bajaring.
\frac{36-7a}{6-a}
36-6a-a kabi iboralarga o‘xshab birlashtiring.
\frac{\mathrm{d}}{\mathrm{d}a}(6-\frac{a}{6-a})
a\times \frac{1}{6-a} ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6\left(6-a\right)}{6-a}-\frac{a}{6-a})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 6 ni \frac{6-a}{6-a} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{6\left(6-a\right)-a}{6-a})
\frac{6\left(6-a\right)}{6-a} va \frac{a}{6-a} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{36-6a-a}{6-a})
6\left(6-a\right)-a ichidagi ko‘paytirishlarni bajaring.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{36-7a}{6-a})
36-6a-a kabi iboralarga o‘xshab birlashtiring.
\frac{\left(-a^{1}+6\right)\frac{\mathrm{d}}{\mathrm{d}a}(-7a^{1}+36)-\left(-7a^{1}+36\right)\frac{\mathrm{d}}{\mathrm{d}a}(-a^{1}+6)}{\left(-a^{1}+6\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(-a^{1}+6\right)\left(-7\right)a^{1-1}-\left(-7a^{1}+36\right)\left(-1\right)a^{1-1}}{\left(-a^{1}+6\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(-a^{1}+6\right)\left(-7\right)a^{0}-\left(-7a^{1}+36\right)\left(-1\right)a^{0}}{\left(-a^{1}+6\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{-a^{1}\left(-7\right)a^{0}+6\left(-7\right)a^{0}-\left(-7a^{1}\left(-1\right)a^{0}+36\left(-1\right)a^{0}\right)}{\left(-a^{1}+6\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{-\left(-7\right)a^{1}+6\left(-7\right)a^{0}-\left(-7\left(-1\right)a^{1}+36\left(-1\right)a^{0}\right)}{\left(-a^{1}+6\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{7a^{1}-42a^{0}-\left(7a^{1}-36a^{0}\right)}{\left(-a^{1}+6\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{7a^{1}-42a^{0}-7a^{1}-\left(-36a^{0}\right)}{\left(-a^{1}+6\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(7-7\right)a^{1}+\left(-42-\left(-36\right)\right)a^{0}}{\left(-a^{1}+6\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{-6a^{0}}{\left(-a^{1}+6\right)^{2}}
7 dan 7 ni va -42 dan -36 ni ayiring.
\frac{-6a^{0}}{\left(-a+6\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{-6}{\left(-a+6\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}