t uchun yechish
t = -\frac{35}{3} = -11\frac{2}{3} \approx -11,666666667
Baham ko'rish
Klipbordga nusxa olish
18t+42=2\left(6t-10\right)-8
6 ga 3t+7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18t+42=12t-20-8
2 ga 6t-10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
18t+42=12t-28
-28 olish uchun -20 dan 8 ni ayirish.
18t+42-12t=-28
Ikkala tarafdan 12t ni ayirish.
6t+42=-28
6t ni olish uchun 18t va -12t ni birlashtirish.
6t=-28-42
Ikkala tarafdan 42 ni ayirish.
6t=-70
-70 olish uchun -28 dan 42 ni ayirish.
t=\frac{-70}{6}
Ikki tarafini 6 ga bo‘ling.
t=-\frac{35}{3}
\frac{-70}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}