Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}=\frac{2}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=\frac{1}{3}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x^{2}=\frac{2}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}=\frac{1}{3}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{3}=0
Ikkala tarafdan \frac{1}{3} ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1}{3}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{1}{3} ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\frac{1}{3}\right)}}{2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{\frac{4}{3}}}{2}
-4 ni -\frac{1}{3} marotabaga ko'paytirish.
x=\frac{0±\frac{2\sqrt{3}}{3}}{2}
\frac{4}{3} ning kvadrat ildizini chiqarish.
x=\frac{\sqrt{3}}{3}
x=\frac{0±\frac{2\sqrt{3}}{3}}{2} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{3}}{3}
x=\frac{0±\frac{2\sqrt{3}}{3}}{2} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{3}}{3} x=-\frac{\sqrt{3}}{3}
Tenglama yechildi.