Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}+4x-24=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-4±\sqrt{4^{2}-4\times 6\left(-24\right)}}{2\times 6}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{16-4\times 6\left(-24\right)}}{2\times 6}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-24\left(-24\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16+576}}{2\times 6}
-24 ni -24 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{592}}{2\times 6}
16 ni 576 ga qo'shish.
x=\frac{-4±4\sqrt{37}}{2\times 6}
592 ning kvadrat ildizini chiqarish.
x=\frac{-4±4\sqrt{37}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{4\sqrt{37}-4}{12}
x=\frac{-4±4\sqrt{37}}{12} tenglamasini yeching, bunda ± musbat. -4 ni 4\sqrt{37} ga qo'shish.
x=\frac{\sqrt{37}-1}{3}
-4+4\sqrt{37} ni 12 ga bo'lish.
x=\frac{-4\sqrt{37}-4}{12}
x=\frac{-4±4\sqrt{37}}{12} tenglamasini yeching, bunda ± manfiy. -4 dan 4\sqrt{37} ni ayirish.
x=\frac{-\sqrt{37}-1}{3}
-4-4\sqrt{37} ni 12 ga bo'lish.
6x^{2}+4x-24=6\left(x-\frac{\sqrt{37}-1}{3}\right)\left(x-\frac{-\sqrt{37}-1}{3}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{37}}{3} ga va x_{2} uchun \frac{-1-\sqrt{37}}{3} ga bo‘ling.