x uchun yechish (complex solution)
x=\sqrt{190}-1\approx 12,784048752
x=-\left(\sqrt{190}+1\right)\approx -14,784048752
x uchun yechish
x=\sqrt{190}-1\approx 12,784048752
x=-\sqrt{190}-1\approx -14,784048752
Grafik
Baham ko'rish
Klipbordga nusxa olish
6x^{2}+12x-1134=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 12 ni b va -1134 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
-24 ni -1134 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{27360}}{2\times 6}
144 ni 27216 ga qo'shish.
x=\frac{-12±12\sqrt{190}}{2\times 6}
27360 ning kvadrat ildizini chiqarish.
x=\frac{-12±12\sqrt{190}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± musbat. -12 ni 12\sqrt{190} ga qo'shish.
x=\sqrt{190}-1
-12+12\sqrt{190} ni 12 ga bo'lish.
x=\frac{-12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± manfiy. -12 dan 12\sqrt{190} ni ayirish.
x=-\sqrt{190}-1
-12-12\sqrt{190} ni 12 ga bo'lish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglama yechildi.
6x^{2}+12x-1134=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
1134 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}+12x=-\left(-1134\right)
O‘zidan -1134 ayirilsa 0 qoladi.
6x^{2}+12x=1134
0 dan -1134 ni ayirish.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{1134}{6}
12 ni 6 ga bo'lish.
x^{2}+2x=189
1134 ni 6 ga bo'lish.
x^{2}+2x+1^{2}=189+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=189+1
1 kvadratini chiqarish.
x^{2}+2x+1=190
189 ni 1 ga qo'shish.
\left(x+1\right)^{2}=190
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{190} x+1=-\sqrt{190}
Qisqartirish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
6x^{2}+12x-1134=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 12 ni b va -1134 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
-24 ni -1134 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{27360}}{2\times 6}
144 ni 27216 ga qo'shish.
x=\frac{-12±12\sqrt{190}}{2\times 6}
27360 ning kvadrat ildizini chiqarish.
x=\frac{-12±12\sqrt{190}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± musbat. -12 ni 12\sqrt{190} ga qo'shish.
x=\sqrt{190}-1
-12+12\sqrt{190} ni 12 ga bo'lish.
x=\frac{-12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± manfiy. -12 dan 12\sqrt{190} ni ayirish.
x=-\sqrt{190}-1
-12-12\sqrt{190} ni 12 ga bo'lish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglama yechildi.
6x^{2}+12x-1134=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
1134 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}+12x=-\left(-1134\right)
O‘zidan -1134 ayirilsa 0 qoladi.
6x^{2}+12x=1134
0 dan -1134 ni ayirish.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{1134}{6}
12 ni 6 ga bo'lish.
x^{2}+2x=189
1134 ni 6 ga bo'lish.
x^{2}+2x+1^{2}=189+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=189+1
1 kvadratini chiqarish.
x^{2}+2x+1=190
189 ni 1 ga qo'shish.
\left(x+1\right)^{2}=190
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{190} x+1=-\sqrt{190}
Qisqartirish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}