Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x^{2}+12x-1134=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 12 ni b va -1134 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
-24 ni -1134 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{27360}}{2\times 6}
144 ni 27216 ga qo'shish.
x=\frac{-12±12\sqrt{190}}{2\times 6}
27360 ning kvadrat ildizini chiqarish.
x=\frac{-12±12\sqrt{190}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± musbat. -12 ni 12\sqrt{190} ga qo'shish.
x=\sqrt{190}-1
-12+12\sqrt{190} ni 12 ga bo'lish.
x=\frac{-12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± manfiy. -12 dan 12\sqrt{190} ni ayirish.
x=-\sqrt{190}-1
-12-12\sqrt{190} ni 12 ga bo'lish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglama yechildi.
6x^{2}+12x-1134=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
1134 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}+12x=-\left(-1134\right)
O‘zidan -1134 ayirilsa 0 qoladi.
6x^{2}+12x=1134
0 dan -1134 ni ayirish.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{1134}{6}
12 ni 6 ga bo'lish.
x^{2}+2x=189
1134 ni 6 ga bo'lish.
x^{2}+2x+1^{2}=189+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=189+1
1 kvadratini chiqarish.
x^{2}+2x+1=190
189 ni 1 ga qo'shish.
\left(x+1\right)^{2}=190
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{190} x+1=-\sqrt{190}
Qisqartirish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
6x^{2}+12x-1134=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 6 ni a, 12 ni b va -1134 ni c bilan almashtiring.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
12 kvadratini chiqarish.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
-4 ni 6 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
-24 ni -1134 marotabaga ko'paytirish.
x=\frac{-12±\sqrt{27360}}{2\times 6}
144 ni 27216 ga qo'shish.
x=\frac{-12±12\sqrt{190}}{2\times 6}
27360 ning kvadrat ildizini chiqarish.
x=\frac{-12±12\sqrt{190}}{12}
2 ni 6 marotabaga ko'paytirish.
x=\frac{12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± musbat. -12 ni 12\sqrt{190} ga qo'shish.
x=\sqrt{190}-1
-12+12\sqrt{190} ni 12 ga bo'lish.
x=\frac{-12\sqrt{190}-12}{12}
x=\frac{-12±12\sqrt{190}}{12} tenglamasini yeching, bunda ± manfiy. -12 dan 12\sqrt{190} ni ayirish.
x=-\sqrt{190}-1
-12-12\sqrt{190} ni 12 ga bo'lish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglama yechildi.
6x^{2}+12x-1134=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
1134 ni tenglamaning ikkala tarafiga qo'shish.
6x^{2}+12x=-\left(-1134\right)
O‘zidan -1134 ayirilsa 0 qoladi.
6x^{2}+12x=1134
0 dan -1134 ni ayirish.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
Ikki tarafini 6 ga bo‘ling.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
6 ga bo'lish 6 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{1134}{6}
12 ni 6 ga bo'lish.
x^{2}+2x=189
1134 ni 6 ga bo'lish.
x^{2}+2x+1^{2}=189+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=189+1
1 kvadratini chiqarish.
x^{2}+2x+1=190
189 ni 1 ga qo'shish.
\left(x+1\right)^{2}=190
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\sqrt{190} x+1=-\sqrt{190}
Qisqartirish.
x=\sqrt{190}-1 x=-\sqrt{190}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.