Baholash
\frac{24\sqrt{2}-12}{7}\approx 3,1344465
Omil
\frac{12 {(2 \sqrt{2} - 1)}}{7} = 3,134446499564898
Baham ko'rish
Klipbordga nusxa olish
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{\left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right)}
\frac{12}{10+6\sqrt{2}} maxrajini 10-6\sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{10^{2}-\left(6\sqrt{2}\right)^{2}}
Hisoblang: \left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-\left(6\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 10 ga hisoblang va 100 ni qiymatni oling.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-6^{2}\left(\sqrt{2}\right)^{2}}
\left(6\sqrt{2}\right)^{2} ni kengaytirish.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\left(\sqrt{2}\right)^{2}}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\times 2}
\sqrt{2} kvadrati – 2.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-72}
72 hosil qilish uchun 36 va 2 ni ko'paytirish.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{28}
28 olish uchun 100 dan 72 ni ayirish.
6\sqrt{2}-6+\frac{3}{7}\left(10-6\sqrt{2}\right)
\frac{3}{7}\left(10-6\sqrt{2}\right) ni olish uchun 12\left(10-6\sqrt{2}\right) ni 28 ga bo‘ling.
6\sqrt{2}-6+\frac{3}{7}\times 10+\frac{3}{7}\left(-6\right)\sqrt{2}
\frac{3}{7} ga 10-6\sqrt{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6\sqrt{2}-6+\frac{3\times 10}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
\frac{3}{7}\times 10 ni yagona kasrga aylantiring.
6\sqrt{2}-6+\frac{30}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
30 hosil qilish uchun 3 va 10 ni ko'paytirish.
6\sqrt{2}-6+\frac{30}{7}+\frac{3\left(-6\right)}{7}\sqrt{2}
\frac{3}{7}\left(-6\right) ni yagona kasrga aylantiring.
6\sqrt{2}-6+\frac{30}{7}+\frac{-18}{7}\sqrt{2}
-18 hosil qilish uchun 3 va -6 ni ko'paytirish.
6\sqrt{2}-6+\frac{30}{7}-\frac{18}{7}\sqrt{2}
\frac{-18}{7} kasri manfiy belgini olib tashlash bilan -\frac{18}{7} sifatida qayta yozilishi mumkin.
6\sqrt{2}-\frac{42}{7}+\frac{30}{7}-\frac{18}{7}\sqrt{2}
-6 ni -\frac{42}{7} kasrga o‘giring.
6\sqrt{2}+\frac{-42+30}{7}-\frac{18}{7}\sqrt{2}
-\frac{42}{7} va \frac{30}{7} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
6\sqrt{2}-\frac{12}{7}-\frac{18}{7}\sqrt{2}
-12 olish uchun -42 va 30'ni qo'shing.
\frac{24}{7}\sqrt{2}-\frac{12}{7}
\frac{24}{7}\sqrt{2} ni olish uchun 6\sqrt{2} va -\frac{18}{7}\sqrt{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}