Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6^{x}=\frac{1}{216}
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(6^{x})=\log(\frac{1}{216})
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
x\log(6)=\log(\frac{1}{216})
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
x=\frac{\log(\frac{1}{216})}{\log(6)}
Ikki tarafini \log(6) ga bo‘ling.
x=\log_{6}\left(\frac{1}{216}\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).