x uchun yechish (complex solution)
x=-\sqrt{110}i\approx -0-10,488088482i
x=\sqrt{110}i\approx 10,488088482i
Grafik
Baham ko'rish
Klipbordga nusxa olish
36+\left(2\times 5+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
36+\left(10+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
36+100+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(10+x\right)^{2} kengaytirilishi uchun ishlating.
136+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
136 olish uchun 36 va 100'ni qo'shing.
136+20x+x^{2}=16-\left(2\times 5-x\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
136+20x+x^{2}=16-\left(10-x\right)^{2}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
136+20x+x^{2}=16-\left(100-20x+x^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(10-x\right)^{2} kengaytirilishi uchun ishlating.
136+20x+x^{2}=16-100+20x-x^{2}
100-20x+x^{2} teskarisini topish uchun har birining teskarisini toping.
136+20x+x^{2}=-84+20x-x^{2}
-84 olish uchun 16 dan 100 ni ayirish.
136+20x+x^{2}-20x=-84-x^{2}
Ikkala tarafdan 20x ni ayirish.
136+x^{2}=-84-x^{2}
0 ni olish uchun 20x va -20x ni birlashtirish.
136+x^{2}+x^{2}=-84
x^{2} ni ikki tarafga qo’shing.
136+2x^{2}=-84
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}=-84-136
Ikkala tarafdan 136 ni ayirish.
2x^{2}=-220
-220 olish uchun -84 dan 136 ni ayirish.
x^{2}=\frac{-220}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=-110
-110 ni olish uchun -220 ni 2 ga bo‘ling.
x=\sqrt{110}i x=-\sqrt{110}i
Tenglama yechildi.
36+\left(2\times 5+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
2 daraja ko‘rsatkichini 6 ga hisoblang va 36 ni qiymatni oling.
36+\left(10+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
36+100+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(10+x\right)^{2} kengaytirilishi uchun ishlating.
136+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
136 olish uchun 36 va 100'ni qo'shing.
136+20x+x^{2}=16-\left(2\times 5-x\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
136+20x+x^{2}=16-\left(10-x\right)^{2}
10 hosil qilish uchun 2 va 5 ni ko'paytirish.
136+20x+x^{2}=16-\left(100-20x+x^{2}\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(10-x\right)^{2} kengaytirilishi uchun ishlating.
136+20x+x^{2}=16-100+20x-x^{2}
100-20x+x^{2} teskarisini topish uchun har birining teskarisini toping.
136+20x+x^{2}=-84+20x-x^{2}
-84 olish uchun 16 dan 100 ni ayirish.
136+20x+x^{2}-\left(-84\right)=20x-x^{2}
Ikkala tarafdan -84 ni ayirish.
136+20x+x^{2}+84=20x-x^{2}
-84 ning teskarisi 84 ga teng.
136+20x+x^{2}+84-20x=-x^{2}
Ikkala tarafdan 20x ni ayirish.
220+20x+x^{2}-20x=-x^{2}
220 olish uchun 136 va 84'ni qo'shing.
220+x^{2}=-x^{2}
0 ni olish uchun 20x va -20x ni birlashtirish.
220+x^{2}+x^{2}=0
x^{2} ni ikki tarafga qo’shing.
220+2x^{2}=0
2x^{2} ni olish uchun x^{2} va x^{2} ni birlashtirish.
2x^{2}+220=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 220}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va 220 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\times 220}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\times 220}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{-1760}}{2\times 2}
-8 ni 220 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{110}i}{2\times 2}
-1760 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{110}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\sqrt{110}i
x=\frac{0±4\sqrt{110}i}{4} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{110}i
x=\frac{0±4\sqrt{110}i}{4} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{110}i x=-\sqrt{110}i
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}