x uchun yechish
x=\frac{\sqrt{10}}{5}\approx 0,632455532
x=-\frac{\sqrt{10}}{5}\approx -0,632455532
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}\times 5=10
x^{2} hosil qilish uchun x va x ni ko'paytirish.
25x^{2}=10
25 hosil qilish uchun 5 va 5 ni ko'paytirish.
x^{2}=\frac{10}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}=\frac{2}{5}
\frac{10}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{\sqrt{10}}{5} x=-\frac{\sqrt{10}}{5}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
5x^{2}\times 5=10
x^{2} hosil qilish uchun x va x ni ko'paytirish.
25x^{2}=10
25 hosil qilish uchun 5 va 5 ni ko'paytirish.
25x^{2}-10=0
Ikkala tarafdan 10 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-10\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, 0 ni b va -10 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 25\left(-10\right)}}{2\times 25}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-100\left(-10\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{0±\sqrt{1000}}{2\times 25}
-100 ni -10 marotabaga ko'paytirish.
x=\frac{0±10\sqrt{10}}{2\times 25}
1000 ning kvadrat ildizini chiqarish.
x=\frac{0±10\sqrt{10}}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{\sqrt{10}}{5}
x=\frac{0±10\sqrt{10}}{50} tenglamasini yeching, bunda ± musbat.
x=-\frac{\sqrt{10}}{5}
x=\frac{0±10\sqrt{10}}{50} tenglamasini yeching, bunda ± manfiy.
x=\frac{\sqrt{10}}{5} x=-\frac{\sqrt{10}}{5}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}