x uchun yechish
x = \frac{\sqrt{718} + 50}{9} \approx 8,532835779
x = \frac{50 - \sqrt{718}}{9} \approx 2,578275332
Grafik
Baham ko'rish
Klipbordga nusxa olish
10x\times 10-9xx=198
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
100x-9xx=198
100 hosil qilish uchun 10 va 10 ni ko'paytirish.
100x-9x^{2}=198
x^{2} hosil qilish uchun x va x ni ko'paytirish.
100x-9x^{2}-198=0
Ikkala tarafdan 198 ni ayirish.
-9x^{2}+100x-198=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-100±\sqrt{100^{2}-4\left(-9\right)\left(-198\right)}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, 100 ni b va -198 ni c bilan almashtiring.
x=\frac{-100±\sqrt{10000-4\left(-9\right)\left(-198\right)}}{2\left(-9\right)}
100 kvadratini chiqarish.
x=\frac{-100±\sqrt{10000+36\left(-198\right)}}{2\left(-9\right)}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{10000-7128}}{2\left(-9\right)}
36 ni -198 marotabaga ko'paytirish.
x=\frac{-100±\sqrt{2872}}{2\left(-9\right)}
10000 ni -7128 ga qo'shish.
x=\frac{-100±2\sqrt{718}}{2\left(-9\right)}
2872 ning kvadrat ildizini chiqarish.
x=\frac{-100±2\sqrt{718}}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{2\sqrt{718}-100}{-18}
x=\frac{-100±2\sqrt{718}}{-18} tenglamasini yeching, bunda ± musbat. -100 ni 2\sqrt{718} ga qo'shish.
x=\frac{50-\sqrt{718}}{9}
-100+2\sqrt{718} ni -18 ga bo'lish.
x=\frac{-2\sqrt{718}-100}{-18}
x=\frac{-100±2\sqrt{718}}{-18} tenglamasini yeching, bunda ± manfiy. -100 dan 2\sqrt{718} ni ayirish.
x=\frac{\sqrt{718}+50}{9}
-100-2\sqrt{718} ni -18 ga bo'lish.
x=\frac{50-\sqrt{718}}{9} x=\frac{\sqrt{718}+50}{9}
Tenglama yechildi.
10x\times 10-9xx=198
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
100x-9xx=198
100 hosil qilish uchun 10 va 10 ni ko'paytirish.
100x-9x^{2}=198
x^{2} hosil qilish uchun x va x ni ko'paytirish.
-9x^{2}+100x=198
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-9x^{2}+100x}{-9}=\frac{198}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\frac{100}{-9}x=\frac{198}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{100}{9}x=\frac{198}{-9}
100 ni -9 ga bo'lish.
x^{2}-\frac{100}{9}x=-22
198 ni -9 ga bo'lish.
x^{2}-\frac{100}{9}x+\left(-\frac{50}{9}\right)^{2}=-22+\left(-\frac{50}{9}\right)^{2}
-\frac{100}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{50}{9} olish uchun. Keyin, -\frac{50}{9} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=-22+\frac{2500}{81}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{50}{9} kvadratini chiqarish.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=\frac{718}{81}
-22 ni \frac{2500}{81} ga qo'shish.
\left(x-\frac{50}{9}\right)^{2}=\frac{718}{81}
x^{2}-\frac{100}{9}x+\frac{2500}{81} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{50}{9}\right)^{2}}=\sqrt{\frac{718}{81}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{50}{9}=\frac{\sqrt{718}}{9} x-\frac{50}{9}=-\frac{\sqrt{718}}{9}
Qisqartirish.
x=\frac{\sqrt{718}+50}{9} x=\frac{50-\sqrt{718}}{9}
\frac{50}{9} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}