Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

592\times 3^{2x}=74
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
3^{2x}=\frac{1}{8}
Ikki tarafini 592 ga bo‘ling.
\log(3^{2x})=\log(\frac{1}{8})
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
2x\log(3)=\log(\frac{1}{8})
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
2x=\frac{\log(\frac{1}{8})}{\log(3)}
Ikki tarafini \log(3) ga bo‘ling.
2x=\log_{3}\left(\frac{1}{8}\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{3\log_{3}\left(2\right)}{2}
Ikki tarafini 2 ga bo‘ling.