Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}=\frac{18}{59}
Ikki tarafini 59 ga bo‘ling.
y=\frac{3\sqrt{118}}{59} y=-\frac{3\sqrt{118}}{59}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y^{2}=\frac{18}{59}
Ikki tarafini 59 ga bo‘ling.
y^{2}-\frac{18}{59}=0
Ikkala tarafdan \frac{18}{59} ni ayirish.
y=\frac{0±\sqrt{0^{2}-4\left(-\frac{18}{59}\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -\frac{18}{59} ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\left(-\frac{18}{59}\right)}}{2}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{\frac{72}{59}}}{2}
-4 ni -\frac{18}{59} marotabaga ko'paytirish.
y=\frac{0±\frac{6\sqrt{118}}{59}}{2}
\frac{72}{59} ning kvadrat ildizini chiqarish.
y=\frac{3\sqrt{118}}{59}
y=\frac{0±\frac{6\sqrt{118}}{59}}{2} tenglamasini yeching, bunda ± musbat.
y=-\frac{3\sqrt{118}}{59}
y=\frac{0±\frac{6\sqrt{118}}{59}}{2} tenglamasini yeching, bunda ± manfiy.
y=\frac{3\sqrt{118}}{59} y=-\frac{3\sqrt{118}}{59}
Tenglama yechildi.