Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+10\right) ga, x+10,x ning eng kichik karralisiga ko‘paytiring.
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}=\left(x+10\right)\times 560
570x ni olish uchun x\times 560 va 10x ni birlashtirish.
570x+x^{2}=560x+5600
x+10 ga 560 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}-560x=5600
Ikkala tarafdan 560x ni ayirish.
10x+x^{2}=5600
10x ni olish uchun 570x va -560x ni birlashtirish.
10x+x^{2}-5600=0
Ikkala tarafdan 5600 ni ayirish.
x^{2}+10x-5600=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{10^{2}-4\left(-5600\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va -5600 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\left(-5600\right)}}{2}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+22400}}{2}
-4 ni -5600 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{22500}}{2}
100 ni 22400 ga qo'shish.
x=\frac{-10±150}{2}
22500 ning kvadrat ildizini chiqarish.
x=\frac{140}{2}
x=\frac{-10±150}{2} tenglamasini yeching, bunda ± musbat. -10 ni 150 ga qo'shish.
x=70
140 ni 2 ga bo'lish.
x=-\frac{160}{2}
x=\frac{-10±150}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 150 ni ayirish.
x=-80
-160 ni 2 ga bo'lish.
x=70 x=-80
Tenglama yechildi.
x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+10\right) ga, x+10,x ning eng kichik karralisiga ko‘paytiring.
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}=\left(x+10\right)\times 560
570x ni olish uchun x\times 560 va 10x ni birlashtirish.
570x+x^{2}=560x+5600
x+10 ga 560 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}-560x=5600
Ikkala tarafdan 560x ni ayirish.
10x+x^{2}=5600
10x ni olish uchun 570x va -560x ni birlashtirish.
x^{2}+10x=5600
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+10x+5^{2}=5600+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=5600+25
5 kvadratini chiqarish.
x^{2}+10x+25=5625
5600 ni 25 ga qo'shish.
\left(x+5\right)^{2}=5625
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{5625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=75 x+5=-75
Qisqartirish.
x=70 x=-80
Tenglamaning ikkala tarafidan 5 ni ayirish.