x uchun yechish
x=-80
x=70
Grafik
Baham ko'rish
Klipbordga nusxa olish
x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+10\right) ga, x+10,x ning eng kichik karralisiga ko‘paytiring.
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}=\left(x+10\right)\times 560
570x ni olish uchun x\times 560 va 10x ni birlashtirish.
570x+x^{2}=560x+5600
x+10 ga 560 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}-560x=5600
Ikkala tarafdan 560x ni ayirish.
10x+x^{2}=5600
10x ni olish uchun 570x va -560x ni birlashtirish.
10x+x^{2}-5600=0
Ikkala tarafdan 5600 ni ayirish.
x^{2}+10x-5600=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-10±\sqrt{10^{2}-4\left(-5600\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 10 ni b va -5600 ni c bilan almashtiring.
x=\frac{-10±\sqrt{100-4\left(-5600\right)}}{2}
10 kvadratini chiqarish.
x=\frac{-10±\sqrt{100+22400}}{2}
-4 ni -5600 marotabaga ko'paytirish.
x=\frac{-10±\sqrt{22500}}{2}
100 ni 22400 ga qo'shish.
x=\frac{-10±150}{2}
22500 ning kvadrat ildizini chiqarish.
x=\frac{140}{2}
x=\frac{-10±150}{2} tenglamasini yeching, bunda ± musbat. -10 ni 150 ga qo'shish.
x=70
140 ni 2 ga bo'lish.
x=-\frac{160}{2}
x=\frac{-10±150}{2} tenglamasini yeching, bunda ± manfiy. -10 dan 150 ni ayirish.
x=-80
-160 ni 2 ga bo'lish.
x=70 x=-80
Tenglama yechildi.
x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
x qiymati -10,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x\left(x+10\right) ga, x+10,x ning eng kichik karralisiga ko‘paytiring.
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x ga x+10 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}=\left(x+10\right)\times 560
570x ni olish uchun x\times 560 va 10x ni birlashtirish.
570x+x^{2}=560x+5600
x+10 ga 560 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
570x+x^{2}-560x=5600
Ikkala tarafdan 560x ni ayirish.
10x+x^{2}=5600
10x ni olish uchun 570x va -560x ni birlashtirish.
x^{2}+10x=5600
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
x^{2}+10x+5^{2}=5600+5^{2}
10 ni bo‘lish, x shartining koeffitsienti, 2 ga 5 olish uchun. Keyin, 5 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+10x+25=5600+25
5 kvadratini chiqarish.
x^{2}+10x+25=5625
5600 ni 25 ga qo'shish.
\left(x+5\right)^{2}=5625
x^{2}+10x+25 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+5\right)^{2}}=\sqrt{5625}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+5=75 x+5=-75
Qisqartirish.
x=70 x=-80
Tenglamaning ikkala tarafidan 5 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}