Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

56x^{2}-12x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 56}}{2\times 56}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 56 ni a, -12 ni b va 1 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 56}}{2\times 56}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-224}}{2\times 56}
-4 ni 56 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{-80}}{2\times 56}
144 ni -224 ga qo'shish.
x=\frac{-\left(-12\right)±4\sqrt{5}i}{2\times 56}
-80 ning kvadrat ildizini chiqarish.
x=\frac{12±4\sqrt{5}i}{2\times 56}
-12 ning teskarisi 12 ga teng.
x=\frac{12±4\sqrt{5}i}{112}
2 ni 56 marotabaga ko'paytirish.
x=\frac{12+4\sqrt{5}i}{112}
x=\frac{12±4\sqrt{5}i}{112} tenglamasini yeching, bunda ± musbat. 12 ni 4i\sqrt{5} ga qo'shish.
x=\frac{3+\sqrt{5}i}{28}
12+4i\sqrt{5} ni 112 ga bo'lish.
x=\frac{-4\sqrt{5}i+12}{112}
x=\frac{12±4\sqrt{5}i}{112} tenglamasini yeching, bunda ± manfiy. 12 dan 4i\sqrt{5} ni ayirish.
x=\frac{-\sqrt{5}i+3}{28}
12-4i\sqrt{5} ni 112 ga bo'lish.
x=\frac{3+\sqrt{5}i}{28} x=\frac{-\sqrt{5}i+3}{28}
Tenglama yechildi.
56x^{2}-12x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
56x^{2}-12x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
56x^{2}-12x=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{56x^{2}-12x}{56}=-\frac{1}{56}
Ikki tarafini 56 ga bo‘ling.
x^{2}+\left(-\frac{12}{56}\right)x=-\frac{1}{56}
56 ga bo'lish 56 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{14}x=-\frac{1}{56}
\frac{-12}{56} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{3}{14}x+\left(-\frac{3}{28}\right)^{2}=-\frac{1}{56}+\left(-\frac{3}{28}\right)^{2}
-\frac{3}{14} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{28} olish uchun. Keyin, -\frac{3}{28} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{14}x+\frac{9}{784}=-\frac{1}{56}+\frac{9}{784}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{28} kvadratini chiqarish.
x^{2}-\frac{3}{14}x+\frac{9}{784}=-\frac{5}{784}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{56} ni \frac{9}{784} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{28}\right)^{2}=-\frac{5}{784}
x^{2}-\frac{3}{14}x+\frac{9}{784} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{28}\right)^{2}}=\sqrt{-\frac{5}{784}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{28}=\frac{\sqrt{5}i}{28} x-\frac{3}{28}=-\frac{\sqrt{5}i}{28}
Qisqartirish.
x=\frac{3+\sqrt{5}i}{28} x=\frac{-\sqrt{5}i+3}{28}
\frac{3}{28} ni tenglamaning ikkala tarafiga qo'shish.