R uchun yechish
R=\sqrt{15062}-100\approx 22,727340067
R=-\sqrt{15062}-100\approx -222,727340067
Baham ko'rish
Klipbordga nusxa olish
5062=R^{2}+200R
R ga R+200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
R^{2}+200R=5062
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
R^{2}+200R-5062=0
Ikkala tarafdan 5062 ni ayirish.
R=\frac{-200±\sqrt{200^{2}-4\left(-5062\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 200 ni b va -5062 ni c bilan almashtiring.
R=\frac{-200±\sqrt{40000-4\left(-5062\right)}}{2}
200 kvadratini chiqarish.
R=\frac{-200±\sqrt{40000+20248}}{2}
-4 ni -5062 marotabaga ko'paytirish.
R=\frac{-200±\sqrt{60248}}{2}
40000 ni 20248 ga qo'shish.
R=\frac{-200±2\sqrt{15062}}{2}
60248 ning kvadrat ildizini chiqarish.
R=\frac{2\sqrt{15062}-200}{2}
R=\frac{-200±2\sqrt{15062}}{2} tenglamasini yeching, bunda ± musbat. -200 ni 2\sqrt{15062} ga qo'shish.
R=\sqrt{15062}-100
-200+2\sqrt{15062} ni 2 ga bo'lish.
R=\frac{-2\sqrt{15062}-200}{2}
R=\frac{-200±2\sqrt{15062}}{2} tenglamasini yeching, bunda ± manfiy. -200 dan 2\sqrt{15062} ni ayirish.
R=-\sqrt{15062}-100
-200-2\sqrt{15062} ni 2 ga bo'lish.
R=\sqrt{15062}-100 R=-\sqrt{15062}-100
Tenglama yechildi.
5062=R^{2}+200R
R ga R+200 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
R^{2}+200R=5062
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
R^{2}+200R+100^{2}=5062+100^{2}
200 ni bo‘lish, x shartining koeffitsienti, 2 ga 100 olish uchun. Keyin, 100 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
R^{2}+200R+10000=5062+10000
100 kvadratini chiqarish.
R^{2}+200R+10000=15062
5062 ni 10000 ga qo'shish.
\left(R+100\right)^{2}=15062
R^{2}+200R+10000 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(R+100\right)^{2}}=\sqrt{15062}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
R+100=\sqrt{15062} R+100=-\sqrt{15062}
Qisqartirish.
R=\sqrt{15062}-100 R=-\sqrt{15062}-100
Tenglamaning ikkala tarafidan 100 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}