t uchun yechish
t=-\frac{10\sqrt{109}i}{327}\approx -0-0,319275428i
t=\frac{10\sqrt{109}i}{327}\approx 0,319275428i
Baham ko'rish
Klipbordga nusxa olish
100=-981t^{2}
100 hosil qilish uchun 50 va 2 ni ko'paytirish.
-981t^{2}=100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
t^{2}=-\frac{100}{981}
Ikki tarafini -981 ga bo‘ling.
t=\frac{10\sqrt{109}i}{327} t=-\frac{10\sqrt{109}i}{327}
Tenglama yechildi.
100=-981t^{2}
100 hosil qilish uchun 50 va 2 ni ko'paytirish.
-981t^{2}=100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-981t^{2}-100=0
Ikkala tarafdan 100 ni ayirish.
t=\frac{0±\sqrt{0^{2}-4\left(-981\right)\left(-100\right)}}{2\left(-981\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -981 ni a, 0 ni b va -100 ni c bilan almashtiring.
t=\frac{0±\sqrt{-4\left(-981\right)\left(-100\right)}}{2\left(-981\right)}
0 kvadratini chiqarish.
t=\frac{0±\sqrt{3924\left(-100\right)}}{2\left(-981\right)}
-4 ni -981 marotabaga ko'paytirish.
t=\frac{0±\sqrt{-392400}}{2\left(-981\right)}
3924 ni -100 marotabaga ko'paytirish.
t=\frac{0±60\sqrt{109}i}{2\left(-981\right)}
-392400 ning kvadrat ildizini chiqarish.
t=\frac{0±60\sqrt{109}i}{-1962}
2 ni -981 marotabaga ko'paytirish.
t=-\frac{10\sqrt{109}i}{327}
t=\frac{0±60\sqrt{109}i}{-1962} tenglamasini yeching, bunda ± musbat.
t=\frac{10\sqrt{109}i}{327}
t=\frac{0±60\sqrt{109}i}{-1962} tenglamasini yeching, bunda ± manfiy.
t=-\frac{10\sqrt{109}i}{327} t=\frac{10\sqrt{109}i}{327}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}