50 ( 1 - 10 \% ) ( 1 + x ) ^ { 2 } = 148
x uchun yechish
x=\frac{2\sqrt{185}}{15}-1\approx 0,813529401
x=-\frac{2\sqrt{185}}{15}-1\approx -2,813529401
Grafik
Baham ko'rish
Klipbordga nusxa olish
50\left(1-\frac{1}{10}\right)\left(1+x\right)^{2}=148
\frac{10}{100} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
50\times \frac{9}{10}\left(1+x\right)^{2}=148
\frac{9}{10} olish uchun 1 dan \frac{1}{10} ni ayirish.
45\left(1+x\right)^{2}=148
45 hosil qilish uchun 50 va \frac{9}{10} ni ko'paytirish.
45\left(1+2x+x^{2}\right)=148
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
45+90x+45x^{2}=148
45 ga 1+2x+x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
45+90x+45x^{2}-148=0
Ikkala tarafdan 148 ni ayirish.
-103+90x+45x^{2}=0
-103 olish uchun 45 dan 148 ni ayirish.
45x^{2}+90x-103=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-90±\sqrt{90^{2}-4\times 45\left(-103\right)}}{2\times 45}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 45 ni a, 90 ni b va -103 ni c bilan almashtiring.
x=\frac{-90±\sqrt{8100-4\times 45\left(-103\right)}}{2\times 45}
90 kvadratini chiqarish.
x=\frac{-90±\sqrt{8100-180\left(-103\right)}}{2\times 45}
-4 ni 45 marotabaga ko'paytirish.
x=\frac{-90±\sqrt{8100+18540}}{2\times 45}
-180 ni -103 marotabaga ko'paytirish.
x=\frac{-90±\sqrt{26640}}{2\times 45}
8100 ni 18540 ga qo'shish.
x=\frac{-90±12\sqrt{185}}{2\times 45}
26640 ning kvadrat ildizini chiqarish.
x=\frac{-90±12\sqrt{185}}{90}
2 ni 45 marotabaga ko'paytirish.
x=\frac{12\sqrt{185}-90}{90}
x=\frac{-90±12\sqrt{185}}{90} tenglamasini yeching, bunda ± musbat. -90 ni 12\sqrt{185} ga qo'shish.
x=\frac{2\sqrt{185}}{15}-1
-90+12\sqrt{185} ni 90 ga bo'lish.
x=\frac{-12\sqrt{185}-90}{90}
x=\frac{-90±12\sqrt{185}}{90} tenglamasini yeching, bunda ± manfiy. -90 dan 12\sqrt{185} ni ayirish.
x=-\frac{2\sqrt{185}}{15}-1
-90-12\sqrt{185} ni 90 ga bo'lish.
x=\frac{2\sqrt{185}}{15}-1 x=-\frac{2\sqrt{185}}{15}-1
Tenglama yechildi.
50\left(1-\frac{1}{10}\right)\left(1+x\right)^{2}=148
\frac{10}{100} ulushini 10 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
50\times \frac{9}{10}\left(1+x\right)^{2}=148
\frac{9}{10} olish uchun 1 dan \frac{1}{10} ni ayirish.
45\left(1+x\right)^{2}=148
45 hosil qilish uchun 50 va \frac{9}{10} ni ko'paytirish.
45\left(1+2x+x^{2}\right)=148
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x\right)^{2} kengaytirilishi uchun ishlating.
45+90x+45x^{2}=148
45 ga 1+2x+x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
90x+45x^{2}=148-45
Ikkala tarafdan 45 ni ayirish.
90x+45x^{2}=103
103 olish uchun 148 dan 45 ni ayirish.
45x^{2}+90x=103
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{45x^{2}+90x}{45}=\frac{103}{45}
Ikki tarafini 45 ga bo‘ling.
x^{2}+\frac{90}{45}x=\frac{103}{45}
45 ga bo'lish 45 ga ko'paytirishni bekor qiladi.
x^{2}+2x=\frac{103}{45}
90 ni 45 ga bo'lish.
x^{2}+2x+1^{2}=\frac{103}{45}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=\frac{103}{45}+1
1 kvadratini chiqarish.
x^{2}+2x+1=\frac{148}{45}
\frac{103}{45} ni 1 ga qo'shish.
\left(x+1\right)^{2}=\frac{148}{45}
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{148}{45}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\frac{2\sqrt{185}}{15} x+1=-\frac{2\sqrt{185}}{15}
Qisqartirish.
x=\frac{2\sqrt{185}}{15}-1 x=-\frac{2\sqrt{185}}{15}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}