Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

52^{2x+1}=320
Tenglamani yechish uchun eksponent va logaritmlarning qoidalaridan foydalanish.
\log(52^{2x+1})=\log(320)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
\left(2x+1\right)\log(52)=\log(320)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
2x+1=\frac{\log(320)}{\log(52)}
Ikki tarafini \log(52) ga bo‘ling.
2x+1=\log_{52}\left(320\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
2x=\log_{52}\left(320\right)-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
x=\frac{\log_{52}\left(320\right)-1}{2}
Ikki tarafini 2 ga bo‘ling.