x uchun yechish (complex solution)
x=\frac{-\sqrt{19}i+3}{2}\approx 1,5-2,179449472i
x=\frac{3+\sqrt{19}i}{2}\approx 1,5+2,179449472i
Grafik
Baham ko'rish
Klipbordga nusxa olish
-x^{2}+3x+5=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
-x^{2}+3x+5-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
-x^{2}+3x+5-12=0
O‘zidan 12 ayirilsa 0 qoladi.
-x^{2}+3x-7=0
5 dan 12 ni ayirish.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 3 ni b va -7 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9+4\left(-7\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9-28}}{2\left(-1\right)}
4 ni -7 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{-19}}{2\left(-1\right)}
9 ni -28 ga qo'shish.
x=\frac{-3±\sqrt{19}i}{2\left(-1\right)}
-19 ning kvadrat ildizini chiqarish.
x=\frac{-3±\sqrt{19}i}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{-3+\sqrt{19}i}{-2}
x=\frac{-3±\sqrt{19}i}{-2} tenglamasini yeching, bunda ± musbat. -3 ni i\sqrt{19} ga qo'shish.
x=\frac{-\sqrt{19}i+3}{2}
-3+i\sqrt{19} ni -2 ga bo'lish.
x=\frac{-\sqrt{19}i-3}{-2}
x=\frac{-3±\sqrt{19}i}{-2} tenglamasini yeching, bunda ± manfiy. -3 dan i\sqrt{19} ni ayirish.
x=\frac{3+\sqrt{19}i}{2}
-3-i\sqrt{19} ni -2 ga bo'lish.
x=\frac{-\sqrt{19}i+3}{2} x=\frac{3+\sqrt{19}i}{2}
Tenglama yechildi.
-x^{2}+3x+5=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}+3x+5-5=12-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-x^{2}+3x=12-5
O‘zidan 5 ayirilsa 0 qoladi.
-x^{2}+3x=7
12 dan 5 ni ayirish.
\frac{-x^{2}+3x}{-1}=\frac{7}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{3}{-1}x=\frac{7}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{7}{-1}
3 ni -1 ga bo'lish.
x^{2}-3x=-7
7 ni -1 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-7+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=-7+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=-\frac{19}{4}
-7 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=-\frac{19}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{19}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{19}i}{2} x-\frac{3}{2}=-\frac{\sqrt{19}i}{2}
Qisqartirish.
x=\frac{3+\sqrt{19}i}{2} x=\frac{-\sqrt{19}i+3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}