Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x\times 5x-1=30x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5x ga ko'paytirish.
25xx-1=30x
25 hosil qilish uchun 5 va 5 ni ko'paytirish.
25x^{2}-1=30x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
25x^{2}-1-30x=0
Ikkala tarafdan 30x ni ayirish.
25x^{2}-30x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 25\left(-1\right)}}{2\times 25}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 25 ni a, -30 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 25\left(-1\right)}}{2\times 25}
-30 kvadratini chiqarish.
x=\frac{-\left(-30\right)±\sqrt{900-100\left(-1\right)}}{2\times 25}
-4 ni 25 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{900+100}}{2\times 25}
-100 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-30\right)±\sqrt{1000}}{2\times 25}
900 ni 100 ga qo'shish.
x=\frac{-\left(-30\right)±10\sqrt{10}}{2\times 25}
1000 ning kvadrat ildizini chiqarish.
x=\frac{30±10\sqrt{10}}{2\times 25}
-30 ning teskarisi 30 ga teng.
x=\frac{30±10\sqrt{10}}{50}
2 ni 25 marotabaga ko'paytirish.
x=\frac{10\sqrt{10}+30}{50}
x=\frac{30±10\sqrt{10}}{50} tenglamasini yeching, bunda ± musbat. 30 ni 10\sqrt{10} ga qo'shish.
x=\frac{\sqrt{10}+3}{5}
30+10\sqrt{10} ni 50 ga bo'lish.
x=\frac{30-10\sqrt{10}}{50}
x=\frac{30±10\sqrt{10}}{50} tenglamasini yeching, bunda ± manfiy. 30 dan 10\sqrt{10} ni ayirish.
x=\frac{3-\sqrt{10}}{5}
30-10\sqrt{10} ni 50 ga bo'lish.
x=\frac{\sqrt{10}+3}{5} x=\frac{3-\sqrt{10}}{5}
Tenglama yechildi.
5x\times 5x-1=30x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 5x ga ko'paytirish.
25xx-1=30x
25 hosil qilish uchun 5 va 5 ni ko'paytirish.
25x^{2}-1=30x
x^{2} hosil qilish uchun x va x ni ko'paytirish.
25x^{2}-1-30x=0
Ikkala tarafdan 30x ni ayirish.
25x^{2}-30x=1
1 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{25x^{2}-30x}{25}=\frac{1}{25}
Ikki tarafini 25 ga bo‘ling.
x^{2}+\left(-\frac{30}{25}\right)x=\frac{1}{25}
25 ga bo'lish 25 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{6}{5}x=\frac{1}{25}
\frac{-30}{25} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\frac{1}{25}+\left(-\frac{3}{5}\right)^{2}
-\frac{6}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{5} olish uchun. Keyin, -\frac{3}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{1+9}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{5} kvadratini chiqarish.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{2}{5}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{25} ni \frac{9}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{5}\right)^{2}=\frac{2}{5}
x^{2}-\frac{6}{5}x+\frac{9}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{2}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{5}=\frac{\sqrt{10}}{5} x-\frac{3}{5}=-\frac{\sqrt{10}}{5}
Qisqartirish.
x=\frac{\sqrt{10}+3}{5} x=\frac{3-\sqrt{10}}{5}
\frac{3}{5} ni tenglamaning ikkala tarafiga qo'shish.