x uchun yechish
x=\frac{1}{5}=0,2
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
15x-20x^{2}=15x-4x
5x ga 3-4x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15x-20x^{2}=11x
11x ni olish uchun 15x va -4x ni birlashtirish.
15x-20x^{2}-11x=0
Ikkala tarafdan 11x ni ayirish.
4x-20x^{2}=0
4x ni olish uchun 15x va -11x ni birlashtirish.
x\left(4-20x\right)=0
x omili.
x=0 x=\frac{1}{5}
Tenglamani yechish uchun x=0 va 4-20x=0 ni yeching.
15x-20x^{2}=15x-4x
5x ga 3-4x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15x-20x^{2}=11x
11x ni olish uchun 15x va -4x ni birlashtirish.
15x-20x^{2}-11x=0
Ikkala tarafdan 11x ni ayirish.
4x-20x^{2}=0
4x ni olish uchun 15x va -11x ni birlashtirish.
-20x^{2}+4x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}}}{2\left(-20\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -20 ni a, 4 ni b va 0 ni c bilan almashtiring.
x=\frac{-4±4}{2\left(-20\right)}
4^{2} ning kvadrat ildizini chiqarish.
x=\frac{-4±4}{-40}
2 ni -20 marotabaga ko'paytirish.
x=\frac{0}{-40}
x=\frac{-4±4}{-40} tenglamasini yeching, bunda ± musbat. -4 ni 4 ga qo'shish.
x=0
0 ni -40 ga bo'lish.
x=-\frac{8}{-40}
x=\frac{-4±4}{-40} tenglamasini yeching, bunda ± manfiy. -4 dan 4 ni ayirish.
x=\frac{1}{5}
\frac{-8}{-40} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=\frac{1}{5}
Tenglama yechildi.
15x-20x^{2}=15x-4x
5x ga 3-4x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
15x-20x^{2}=11x
11x ni olish uchun 15x va -4x ni birlashtirish.
15x-20x^{2}-11x=0
Ikkala tarafdan 11x ni ayirish.
4x-20x^{2}=0
4x ni olish uchun 15x va -11x ni birlashtirish.
-20x^{2}+4x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-20x^{2}+4x}{-20}=\frac{0}{-20}
Ikki tarafini -20 ga bo‘ling.
x^{2}+\frac{4}{-20}x=\frac{0}{-20}
-20 ga bo'lish -20 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{5}x=\frac{0}{-20}
\frac{4}{-20} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{5}x=0
0 ni -20 ga bo'lish.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\left(-\frac{1}{10}\right)^{2}
-\frac{1}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{10} olish uchun. Keyin, -\frac{1}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{1}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{10} kvadratini chiqarish.
\left(x-\frac{1}{10}\right)^{2}=\frac{1}{100}
x^{2}-\frac{1}{5}x+\frac{1}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{1}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{10}=\frac{1}{10} x-\frac{1}{10}=-\frac{1}{10}
Qisqartirish.
x=\frac{1}{5} x=0
\frac{1}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}