x uchun yechish
x = \frac{\sqrt{69} + 7}{10} \approx 1,530662386
x=\frac{7-\sqrt{69}}{10}\approx -0,130662386
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}-7x+6=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
5x^{2}-7x+6-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
5x^{2}-7x+6-7=0
O‘zidan 7 ayirilsa 0 qoladi.
5x^{2}-7x-1=0
6 dan 7 ni ayirish.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 5\left(-1\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -7 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 5\left(-1\right)}}{2\times 5}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-20\left(-1\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+20}}{2\times 5}
-20 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{69}}{2\times 5}
49 ni 20 ga qo'shish.
x=\frac{7±\sqrt{69}}{2\times 5}
-7 ning teskarisi 7 ga teng.
x=\frac{7±\sqrt{69}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{\sqrt{69}+7}{10}
x=\frac{7±\sqrt{69}}{10} tenglamasini yeching, bunda ± musbat. 7 ni \sqrt{69} ga qo'shish.
x=\frac{7-\sqrt{69}}{10}
x=\frac{7±\sqrt{69}}{10} tenglamasini yeching, bunda ± manfiy. 7 dan \sqrt{69} ni ayirish.
x=\frac{\sqrt{69}+7}{10} x=\frac{7-\sqrt{69}}{10}
Tenglama yechildi.
5x^{2}-7x+6=7
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}-7x+6-6=7-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
5x^{2}-7x=7-6
O‘zidan 6 ayirilsa 0 qoladi.
5x^{2}-7x=1
7 dan 6 ni ayirish.
\frac{5x^{2}-7x}{5}=\frac{1}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}-\frac{7}{5}x=\frac{1}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{5}x+\left(-\frac{7}{10}\right)^{2}=\frac{1}{5}+\left(-\frac{7}{10}\right)^{2}
-\frac{7}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{10} olish uchun. Keyin, -\frac{7}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{1}{5}+\frac{49}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{10} kvadratini chiqarish.
x^{2}-\frac{7}{5}x+\frac{49}{100}=\frac{69}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{5} ni \frac{49}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{10}\right)^{2}=\frac{69}{100}
x^{2}-\frac{7}{5}x+\frac{49}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{10}\right)^{2}}=\sqrt{\frac{69}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{10}=\frac{\sqrt{69}}{10} x-\frac{7}{10}=-\frac{\sqrt{69}}{10}
Qisqartirish.
x=\frac{\sqrt{69}+7}{10} x=\frac{7-\sqrt{69}}{10}
\frac{7}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}