x uchun yechish (complex solution)
x=4+i
x=4-i
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}-40x+85=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 85}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -40 ni b va 85 ni c bilan almashtiring.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 85}}{2\times 5}
-40 kvadratini chiqarish.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 85}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{1600-1700}}{2\times 5}
-20 ni 85 marotabaga ko'paytirish.
x=\frac{-\left(-40\right)±\sqrt{-100}}{2\times 5}
1600 ni -1700 ga qo'shish.
x=\frac{-\left(-40\right)±10i}{2\times 5}
-100 ning kvadrat ildizini chiqarish.
x=\frac{40±10i}{2\times 5}
-40 ning teskarisi 40 ga teng.
x=\frac{40±10i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{40+10i}{10}
x=\frac{40±10i}{10} tenglamasini yeching, bunda ± musbat. 40 ni 10i ga qo'shish.
x=4+i
40+10i ni 10 ga bo'lish.
x=\frac{40-10i}{10}
x=\frac{40±10i}{10} tenglamasini yeching, bunda ± manfiy. 40 dan 10i ni ayirish.
x=4-i
40-10i ni 10 ga bo'lish.
x=4+i x=4-i
Tenglama yechildi.
5x^{2}-40x+85=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}-40x+85-85=-85
Tenglamaning ikkala tarafidan 85 ni ayirish.
5x^{2}-40x=-85
O‘zidan 85 ayirilsa 0 qoladi.
\frac{5x^{2}-40x}{5}=-\frac{85}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{85}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-8x=-\frac{85}{5}
-40 ni 5 ga bo'lish.
x^{2}-8x=-17
-85 ni 5 ga bo'lish.
x^{2}-8x+\left(-4\right)^{2}=-17+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-17+16
-4 kvadratini chiqarish.
x^{2}-8x+16=-1
-17 ni 16 ga qo'shish.
\left(x-4\right)^{2}=-1
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=i x-4=-i
Qisqartirish.
x=4+i x=4-i
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}