x uchun yechish
x = \frac{3 \sqrt{21} + 3}{10} \approx 1,674772708
x=\frac{3-3\sqrt{21}}{10}\approx -1,074772708
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}-3x=9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
5x^{2}-3x-9=9-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
5x^{2}-3x-9=0
O‘zidan 9 ayirilsa 0 qoladi.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 5\left(-9\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -3 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 5\left(-9\right)}}{2\times 5}
-3 kvadratini chiqarish.
x=\frac{-\left(-3\right)±\sqrt{9-20\left(-9\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{9+180}}{2\times 5}
-20 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-3\right)±\sqrt{189}}{2\times 5}
9 ni 180 ga qo'shish.
x=\frac{-\left(-3\right)±3\sqrt{21}}{2\times 5}
189 ning kvadrat ildizini chiqarish.
x=\frac{3±3\sqrt{21}}{2\times 5}
-3 ning teskarisi 3 ga teng.
x=\frac{3±3\sqrt{21}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{3\sqrt{21}+3}{10}
x=\frac{3±3\sqrt{21}}{10} tenglamasini yeching, bunda ± musbat. 3 ni 3\sqrt{21} ga qo'shish.
x=\frac{3-3\sqrt{21}}{10}
x=\frac{3±3\sqrt{21}}{10} tenglamasini yeching, bunda ± manfiy. 3 dan 3\sqrt{21} ni ayirish.
x=\frac{3\sqrt{21}+3}{10} x=\frac{3-3\sqrt{21}}{10}
Tenglama yechildi.
5x^{2}-3x=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}-3x}{5}=\frac{9}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}-\frac{3}{5}x=\frac{9}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{5}x+\left(-\frac{3}{10}\right)^{2}=\frac{9}{5}+\left(-\frac{3}{10}\right)^{2}
-\frac{3}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{10} olish uchun. Keyin, -\frac{3}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{9}{5}+\frac{9}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{10} kvadratini chiqarish.
x^{2}-\frac{3}{5}x+\frac{9}{100}=\frac{189}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{5} ni \frac{9}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{10}\right)^{2}=\frac{189}{100}
x^{2}-\frac{3}{5}x+\frac{9}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{10}\right)^{2}}=\sqrt{\frac{189}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{10}=\frac{3\sqrt{21}}{10} x-\frac{3}{10}=-\frac{3\sqrt{21}}{10}
Qisqartirish.
x=\frac{3\sqrt{21}+3}{10} x=\frac{3-3\sqrt{21}}{10}
\frac{3}{10} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}