Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(5x-25\right)=0
x omili.
x=0 x=5
Tenglamani yechish uchun x=0 va 5x-25=0 ni yeching.
5x^{2}-25x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -25 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-25\right)±25}{2\times 5}
\left(-25\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{25±25}{2\times 5}
-25 ning teskarisi 25 ga teng.
x=\frac{25±25}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{50}{10}
x=\frac{25±25}{10} tenglamasini yeching, bunda ± musbat. 25 ni 25 ga qo'shish.
x=5
50 ni 10 ga bo'lish.
x=\frac{0}{10}
x=\frac{25±25}{10} tenglamasini yeching, bunda ± manfiy. 25 dan 25 ni ayirish.
x=0
0 ni 10 ga bo'lish.
x=5 x=0
Tenglama yechildi.
5x^{2}-25x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}-25x}{5}=\frac{0}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{0}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{0}{5}
-25 ni 5 ga bo'lish.
x^{2}-5x=0
0 ni 5 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
x=5 x=0
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.