Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-20x+12-x^{2}=7x-6
Ikkala tarafdan x^{2} ni ayirish.
4x^{2}-20x+12=7x-6
4x^{2} ni olish uchun 5x^{2} va -x^{2} ni birlashtirish.
4x^{2}-20x+12-7x=-6
Ikkala tarafdan 7x ni ayirish.
4x^{2}-27x+12=-6
-27x ni olish uchun -20x va -7x ni birlashtirish.
4x^{2}-27x+12+6=0
6 ni ikki tarafga qo’shing.
4x^{2}-27x+18=0
18 olish uchun 12 va 6'ni qo'shing.
a+b=-27 ab=4\times 18=72
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 4x^{2}+ax+bx+18 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-72 -2,-36 -3,-24 -4,-18 -6,-12 -8,-9
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 72-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-72=-73 -2-36=-38 -3-24=-27 -4-18=-22 -6-12=-18 -8-9=-17
Har bir juftlik yigʻindisini hisoblang.
a=-24 b=-3
Yechim – -27 yigʻindisini beruvchi juftlik.
\left(4x^{2}-24x\right)+\left(-3x+18\right)
4x^{2}-27x+18 ni \left(4x^{2}-24x\right)+\left(-3x+18\right) sifatida qaytadan yozish.
4x\left(x-6\right)-3\left(x-6\right)
Birinchi guruhda 4x ni va ikkinchi guruhda -3 ni faktordan chiqaring.
\left(x-6\right)\left(4x-3\right)
Distributiv funktsiyasidan foydalangan holda x-6 umumiy terminini chiqaring.
x=6 x=\frac{3}{4}
Tenglamani yechish uchun x-6=0 va 4x-3=0 ni yeching.
5x^{2}-20x+12-x^{2}=7x-6
Ikkala tarafdan x^{2} ni ayirish.
4x^{2}-20x+12=7x-6
4x^{2} ni olish uchun 5x^{2} va -x^{2} ni birlashtirish.
4x^{2}-20x+12-7x=-6
Ikkala tarafdan 7x ni ayirish.
4x^{2}-27x+12=-6
-27x ni olish uchun -20x va -7x ni birlashtirish.
4x^{2}-27x+12+6=0
6 ni ikki tarafga qo’shing.
4x^{2}-27x+18=0
18 olish uchun 12 va 6'ni qo'shing.
x=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 4\times 18}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -27 ni b va 18 ni c bilan almashtiring.
x=\frac{-\left(-27\right)±\sqrt{729-4\times 4\times 18}}{2\times 4}
-27 kvadratini chiqarish.
x=\frac{-\left(-27\right)±\sqrt{729-16\times 18}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-27\right)±\sqrt{729-288}}{2\times 4}
-16 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-27\right)±\sqrt{441}}{2\times 4}
729 ni -288 ga qo'shish.
x=\frac{-\left(-27\right)±21}{2\times 4}
441 ning kvadrat ildizini chiqarish.
x=\frac{27±21}{2\times 4}
-27 ning teskarisi 27 ga teng.
x=\frac{27±21}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{48}{8}
x=\frac{27±21}{8} tenglamasini yeching, bunda ± musbat. 27 ni 21 ga qo'shish.
x=6
48 ni 8 ga bo'lish.
x=\frac{6}{8}
x=\frac{27±21}{8} tenglamasini yeching, bunda ± manfiy. 27 dan 21 ni ayirish.
x=\frac{3}{4}
\frac{6}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=6 x=\frac{3}{4}
Tenglama yechildi.
5x^{2}-20x+12-x^{2}=7x-6
Ikkala tarafdan x^{2} ni ayirish.
4x^{2}-20x+12=7x-6
4x^{2} ni olish uchun 5x^{2} va -x^{2} ni birlashtirish.
4x^{2}-20x+12-7x=-6
Ikkala tarafdan 7x ni ayirish.
4x^{2}-27x+12=-6
-27x ni olish uchun -20x va -7x ni birlashtirish.
4x^{2}-27x=-6-12
Ikkala tarafdan 12 ni ayirish.
4x^{2}-27x=-18
-18 olish uchun -6 dan 12 ni ayirish.
\frac{4x^{2}-27x}{4}=-\frac{18}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{27}{4}x=-\frac{18}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{27}{4}x=-\frac{9}{2}
\frac{-18}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{27}{4}x+\left(-\frac{27}{8}\right)^{2}=-\frac{9}{2}+\left(-\frac{27}{8}\right)^{2}
-\frac{27}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{27}{8} olish uchun. Keyin, -\frac{27}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{27}{4}x+\frac{729}{64}=-\frac{9}{2}+\frac{729}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{27}{8} kvadratini chiqarish.
x^{2}-\frac{27}{4}x+\frac{729}{64}=\frac{441}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{2} ni \frac{729}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{27}{8}\right)^{2}=\frac{441}{64}
x^{2}-\frac{27}{4}x+\frac{729}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{27}{8}\right)^{2}}=\sqrt{\frac{441}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{27}{8}=\frac{21}{8} x-\frac{27}{8}=-\frac{21}{8}
Qisqartirish.
x=6 x=\frac{3}{4}
\frac{27}{8} ni tenglamaning ikkala tarafiga qo'shish.