x uchun yechish
x = \frac{3 \sqrt{17} + 21}{8} \approx 4,17116461
x = \frac{21 - 3 \sqrt{17}}{8} \approx 1,07883539
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}-20x+12-x^{2}=1x-6
Ikkala tarafdan x^{2} ni ayirish.
4x^{2}-20x+12=1x-6
4x^{2} ni olish uchun 5x^{2} va -x^{2} ni birlashtirish.
4x^{2}-20x+12-x=-6
Ikkala tarafdan 1x ni ayirish.
4x^{2}-21x+12=-6
-21x ni olish uchun -20x va -x ni birlashtirish.
4x^{2}-21x+12+6=0
6 ni ikki tarafga qo’shing.
4x^{2}-21x+18=0
18 olish uchun 12 va 6'ni qo'shing.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 4\times 18}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -21 ni b va 18 ni c bilan almashtiring.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 4\times 18}}{2\times 4}
-21 kvadratini chiqarish.
x=\frac{-\left(-21\right)±\sqrt{441-16\times 18}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{441-288}}{2\times 4}
-16 ni 18 marotabaga ko'paytirish.
x=\frac{-\left(-21\right)±\sqrt{153}}{2\times 4}
441 ni -288 ga qo'shish.
x=\frac{-\left(-21\right)±3\sqrt{17}}{2\times 4}
153 ning kvadrat ildizini chiqarish.
x=\frac{21±3\sqrt{17}}{2\times 4}
-21 ning teskarisi 21 ga teng.
x=\frac{21±3\sqrt{17}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{3\sqrt{17}+21}{8}
x=\frac{21±3\sqrt{17}}{8} tenglamasini yeching, bunda ± musbat. 21 ni 3\sqrt{17} ga qo'shish.
x=\frac{21-3\sqrt{17}}{8}
x=\frac{21±3\sqrt{17}}{8} tenglamasini yeching, bunda ± manfiy. 21 dan 3\sqrt{17} ni ayirish.
x=\frac{3\sqrt{17}+21}{8} x=\frac{21-3\sqrt{17}}{8}
Tenglama yechildi.
5x^{2}-20x+12-x^{2}=1x-6
Ikkala tarafdan x^{2} ni ayirish.
4x^{2}-20x+12=1x-6
4x^{2} ni olish uchun 5x^{2} va -x^{2} ni birlashtirish.
4x^{2}-20x+12-x=-6
Ikkala tarafdan 1x ni ayirish.
4x^{2}-21x+12=-6
-21x ni olish uchun -20x va -x ni birlashtirish.
4x^{2}-21x=-6-12
Ikkala tarafdan 12 ni ayirish.
4x^{2}-21x=-18
-18 olish uchun -6 dan 12 ni ayirish.
\frac{4x^{2}-21x}{4}=-\frac{18}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{21}{4}x=-\frac{18}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{21}{4}x=-\frac{9}{2}
\frac{-18}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{21}{4}x+\left(-\frac{21}{8}\right)^{2}=-\frac{9}{2}+\left(-\frac{21}{8}\right)^{2}
-\frac{21}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{21}{8} olish uchun. Keyin, -\frac{21}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{21}{4}x+\frac{441}{64}=-\frac{9}{2}+\frac{441}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{21}{8} kvadratini chiqarish.
x^{2}-\frac{21}{4}x+\frac{441}{64}=\frac{153}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{2} ni \frac{441}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{21}{8}\right)^{2}=\frac{153}{64}
x^{2}-\frac{21}{4}x+\frac{441}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{21}{8}\right)^{2}}=\sqrt{\frac{153}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{21}{8}=\frac{3\sqrt{17}}{8} x-\frac{21}{8}=-\frac{3\sqrt{17}}{8}
Qisqartirish.
x=\frac{3\sqrt{17}+21}{8} x=\frac{21-3\sqrt{17}}{8}
\frac{21}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}