Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}+6x-9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 5\left(-9\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 6 ni b va -9 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 5\left(-9\right)}}{2\times 5}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-20\left(-9\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+180}}{2\times 5}
-20 ni -9 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{216}}{2\times 5}
36 ni 180 ga qo'shish.
x=\frac{-6±6\sqrt{6}}{2\times 5}
216 ning kvadrat ildizini chiqarish.
x=\frac{-6±6\sqrt{6}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{6\sqrt{6}-6}{10}
x=\frac{-6±6\sqrt{6}}{10} tenglamasini yeching, bunda ± musbat. -6 ni 6\sqrt{6} ga qo'shish.
x=\frac{3\sqrt{6}-3}{5}
-6+6\sqrt{6} ni 10 ga bo'lish.
x=\frac{-6\sqrt{6}-6}{10}
x=\frac{-6±6\sqrt{6}}{10} tenglamasini yeching, bunda ± manfiy. -6 dan 6\sqrt{6} ni ayirish.
x=\frac{-3\sqrt{6}-3}{5}
-6-6\sqrt{6} ni 10 ga bo'lish.
x=\frac{3\sqrt{6}-3}{5} x=\frac{-3\sqrt{6}-3}{5}
Tenglama yechildi.
5x^{2}+6x-9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}+6x-9-\left(-9\right)=-\left(-9\right)
9 ni tenglamaning ikkala tarafiga qo'shish.
5x^{2}+6x=-\left(-9\right)
O‘zidan -9 ayirilsa 0 qoladi.
5x^{2}+6x=9
0 dan -9 ni ayirish.
\frac{5x^{2}+6x}{5}=\frac{9}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{6}{5}x=\frac{9}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{9}{5}+\left(\frac{3}{5}\right)^{2}
\frac{6}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{5} olish uchun. Keyin, \frac{3}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{9}{5}+\frac{9}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{5} kvadratini chiqarish.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{54}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{5} ni \frac{9}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{5}\right)^{2}=\frac{54}{25}
x^{2}+\frac{6}{5}x+\frac{9}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{54}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{5}=\frac{3\sqrt{6}}{5} x+\frac{3}{5}=-\frac{3\sqrt{6}}{5}
Qisqartirish.
x=\frac{3\sqrt{6}-3}{5} x=\frac{-3\sqrt{6}-3}{5}
Tenglamaning ikkala tarafidan \frac{3}{5} ni ayirish.