x uchun yechish (complex solution)
x=\frac{-1+\sqrt{3}i}{2}\approx -0,5+0,866025404i
x=\frac{-\sqrt{3}i-1}{2}\approx -0,5-0,866025404i
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}+5x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\times 5\times 5}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 5 ni b va 5 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 5\times 5}}{2\times 5}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-20\times 5}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-100}}{2\times 5}
-20 ni 5 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-75}}{2\times 5}
25 ni -100 ga qo'shish.
x=\frac{-5±5\sqrt{3}i}{2\times 5}
-75 ning kvadrat ildizini chiqarish.
x=\frac{-5±5\sqrt{3}i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{-5+5\sqrt{3}i}{10}
x=\frac{-5±5\sqrt{3}i}{10} tenglamasini yeching, bunda ± musbat. -5 ni 5i\sqrt{3} ga qo'shish.
x=\frac{-1+\sqrt{3}i}{2}
-5+5i\sqrt{3} ni 10 ga bo'lish.
x=\frac{-5\sqrt{3}i-5}{10}
x=\frac{-5±5\sqrt{3}i}{10} tenglamasini yeching, bunda ± manfiy. -5 dan 5i\sqrt{3} ni ayirish.
x=\frac{-\sqrt{3}i-1}{2}
-5-5i\sqrt{3} ni 10 ga bo'lish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglama yechildi.
5x^{2}+5x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}+5x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
5x^{2}+5x=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{5x^{2}+5x}{5}=-\frac{5}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{5}{5}x=-\frac{5}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{5}{5}
5 ni 5 ga bo'lish.
x^{2}+x=-1
-5 ni 5 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-1+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=-1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-\frac{3}{4}
-1 ni \frac{1}{4} ga qo'shish.
\left(x+\frac{1}{2}\right)^{2}=-\frac{3}{4}
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\frac{\sqrt{3}i}{2} x+\frac{1}{2}=-\frac{\sqrt{3}i}{2}
Qisqartirish.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}