Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x\left(5x+4\right)=0
x omili.
x=0 x=-\frac{4}{5}
Tenglamani yechish uchun x=0 va 5x+4=0 ni yeching.
5x^{2}+4x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 4 ni b va 0 ni c bilan almashtiring.
x=\frac{-4±4}{2\times 5}
4^{2} ning kvadrat ildizini chiqarish.
x=\frac{-4±4}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{0}{10}
x=\frac{-4±4}{10} tenglamasini yeching, bunda ± musbat. -4 ni 4 ga qo'shish.
x=0
0 ni 10 ga bo'lish.
x=-\frac{8}{10}
x=\frac{-4±4}{10} tenglamasini yeching, bunda ± manfiy. -4 dan 4 ni ayirish.
x=-\frac{4}{5}
\frac{-8}{10} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{4}{5}
Tenglama yechildi.
5x^{2}+4x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}+4x}{5}=\frac{0}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{4}{5}x=\frac{0}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{4}{5}x=0
0 ni 5 ga bo'lish.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=\left(\frac{2}{5}\right)^{2}
\frac{4}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{2}{5} olish uchun. Keyin, \frac{2}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{4}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{2}{5} kvadratini chiqarish.
\left(x+\frac{2}{5}\right)^{2}=\frac{4}{25}
x^{2}+\frac{4}{5}x+\frac{4}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{2}{5}=\frac{2}{5} x+\frac{2}{5}=-\frac{2}{5}
Qisqartirish.
x=0 x=-\frac{4}{5}
Tenglamaning ikkala tarafidan \frac{2}{5} ni ayirish.