Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}+3x=17
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
5x^{2}+3x-17=17-17
Tenglamaning ikkala tarafidan 17 ni ayirish.
5x^{2}+3x-17=0
O‘zidan 17 ayirilsa 0 qoladi.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-17\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 3 ni b va -17 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 5\left(-17\right)}}{2\times 5}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-20\left(-17\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+340}}{2\times 5}
-20 ni -17 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{349}}{2\times 5}
9 ni 340 ga qo'shish.
x=\frac{-3±\sqrt{349}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{\sqrt{349}-3}{10}
x=\frac{-3±\sqrt{349}}{10} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{349} ga qo'shish.
x=\frac{-\sqrt{349}-3}{10}
x=\frac{-3±\sqrt{349}}{10} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{349} ni ayirish.
x=\frac{\sqrt{349}-3}{10} x=\frac{-\sqrt{349}-3}{10}
Tenglama yechildi.
5x^{2}+3x=17
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{5x^{2}+3x}{5}=\frac{17}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{3}{5}x=\frac{17}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{17}{5}+\left(\frac{3}{10}\right)^{2}
\frac{3}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{10} olish uchun. Keyin, \frac{3}{10} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{17}{5}+\frac{9}{100}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{10} kvadratini chiqarish.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{349}{100}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{17}{5} ni \frac{9}{100} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{10}\right)^{2}=\frac{349}{100}
x^{2}+\frac{3}{5}x+\frac{9}{100} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{349}{100}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{10}=\frac{\sqrt{349}}{10} x+\frac{3}{10}=-\frac{\sqrt{349}}{10}
Qisqartirish.
x=\frac{\sqrt{349}-3}{10} x=\frac{-\sqrt{349}-3}{10}
Tenglamaning ikkala tarafidan \frac{3}{10} ni ayirish.