Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5x^{2}-70x+238=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 5\times 238}}{2\times 5}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 5\times 238}}{2\times 5}
-70 kvadratini chiqarish.
x=\frac{-\left(-70\right)±\sqrt{4900-20\times 238}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{4900-4760}}{2\times 5}
-20 ni 238 marotabaga ko'paytirish.
x=\frac{-\left(-70\right)±\sqrt{140}}{2\times 5}
4900 ni -4760 ga qo'shish.
x=\frac{-\left(-70\right)±2\sqrt{35}}{2\times 5}
140 ning kvadrat ildizini chiqarish.
x=\frac{70±2\sqrt{35}}{2\times 5}
-70 ning teskarisi 70 ga teng.
x=\frac{70±2\sqrt{35}}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{2\sqrt{35}+70}{10}
x=\frac{70±2\sqrt{35}}{10} tenglamasini yeching, bunda ± musbat. 70 ni 2\sqrt{35} ga qo'shish.
x=\frac{\sqrt{35}}{5}+7
70+2\sqrt{35} ni 10 ga bo'lish.
x=\frac{70-2\sqrt{35}}{10}
x=\frac{70±2\sqrt{35}}{10} tenglamasini yeching, bunda ± manfiy. 70 dan 2\sqrt{35} ni ayirish.
x=-\frac{\sqrt{35}}{5}+7
70-2\sqrt{35} ni 10 ga bo'lish.
5x^{2}-70x+238=5\left(x-\left(\frac{\sqrt{35}}{5}+7\right)\right)\left(x-\left(-\frac{\sqrt{35}}{5}+7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 7+\frac{\sqrt{35}}{5} ga va x_{2} uchun 7-\frac{\sqrt{35}}{5} ga bo‘ling.