x uchun yechish (complex solution)
x=\frac{-1+\sqrt{39}i}{5}\approx -0,2+1,2489996i
x=\frac{-\sqrt{39}i-1}{5}\approx -0,2-1,2489996i
Grafik
Baham ko'rish
Klipbordga nusxa olish
5x^{2}+2x+8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\times 5\times 8}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 2 ni b va 8 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\times 5\times 8}}{2\times 5}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-20\times 8}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4-160}}{2\times 5}
-20 ni 8 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{-156}}{2\times 5}
4 ni -160 ga qo'shish.
x=\frac{-2±2\sqrt{39}i}{2\times 5}
-156 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{39}i}{10}
2 ni 5 marotabaga ko'paytirish.
x=\frac{-2+2\sqrt{39}i}{10}
x=\frac{-2±2\sqrt{39}i}{10} tenglamasini yeching, bunda ± musbat. -2 ni 2i\sqrt{39} ga qo'shish.
x=\frac{-1+\sqrt{39}i}{5}
-2+2i\sqrt{39} ni 10 ga bo'lish.
x=\frac{-2\sqrt{39}i-2}{10}
x=\frac{-2±2\sqrt{39}i}{10} tenglamasini yeching, bunda ± manfiy. -2 dan 2i\sqrt{39} ni ayirish.
x=\frac{-\sqrt{39}i-1}{5}
-2-2i\sqrt{39} ni 10 ga bo'lish.
x=\frac{-1+\sqrt{39}i}{5} x=\frac{-\sqrt{39}i-1}{5}
Tenglama yechildi.
5x^{2}+2x+8=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5x^{2}+2x+8-8=-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
5x^{2}+2x=-8
O‘zidan 8 ayirilsa 0 qoladi.
\frac{5x^{2}+2x}{5}=-\frac{8}{5}
Ikki tarafini 5 ga bo‘ling.
x^{2}+\frac{2}{5}x=-\frac{8}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=-\frac{8}{5}+\left(\frac{1}{5}\right)^{2}
\frac{2}{5} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{5} olish uchun. Keyin, \frac{1}{5} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{2}{5}x+\frac{1}{25}=-\frac{8}{5}+\frac{1}{25}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{5} kvadratini chiqarish.
x^{2}+\frac{2}{5}x+\frac{1}{25}=-\frac{39}{25}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{8}{5} ni \frac{1}{25} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{5}\right)^{2}=-\frac{39}{25}
x^{2}+\frac{2}{5}x+\frac{1}{25} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{-\frac{39}{25}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{5}=\frac{\sqrt{39}i}{5} x+\frac{1}{5}=-\frac{\sqrt{39}i}{5}
Qisqartirish.
x=\frac{-1+\sqrt{39}i}{5} x=\frac{-\sqrt{39}i-1}{5}
Tenglamaning ikkala tarafidan \frac{1}{5} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}