Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5w^{2}-40w-50=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
w=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\left(-50\right)}}{2\times 5}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
w=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\left(-50\right)}}{2\times 5}
-40 kvadratini chiqarish.
w=\frac{-\left(-40\right)±\sqrt{1600-20\left(-50\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
w=\frac{-\left(-40\right)±\sqrt{1600+1000}}{2\times 5}
-20 ni -50 marotabaga ko'paytirish.
w=\frac{-\left(-40\right)±\sqrt{2600}}{2\times 5}
1600 ni 1000 ga qo'shish.
w=\frac{-\left(-40\right)±10\sqrt{26}}{2\times 5}
2600 ning kvadrat ildizini chiqarish.
w=\frac{40±10\sqrt{26}}{2\times 5}
-40 ning teskarisi 40 ga teng.
w=\frac{40±10\sqrt{26}}{10}
2 ni 5 marotabaga ko'paytirish.
w=\frac{10\sqrt{26}+40}{10}
w=\frac{40±10\sqrt{26}}{10} tenglamasini yeching, bunda ± musbat. 40 ni 10\sqrt{26} ga qo'shish.
w=\sqrt{26}+4
40+10\sqrt{26} ni 10 ga bo'lish.
w=\frac{40-10\sqrt{26}}{10}
w=\frac{40±10\sqrt{26}}{10} tenglamasini yeching, bunda ± manfiy. 40 dan 10\sqrt{26} ni ayirish.
w=4-\sqrt{26}
40-10\sqrt{26} ni 10 ga bo'lish.
5w^{2}-40w-50=5\left(w-\left(\sqrt{26}+4\right)\right)\left(w-\left(4-\sqrt{26}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 4+\sqrt{26} ga va x_{2} uchun 4-\sqrt{26} ga bo‘ling.