Asosiy tarkibga oʻtish
p uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5p^{2}-35p=0
Ikkala tarafdan 35p ni ayirish.
p\left(5p-35\right)=0
p omili.
p=0 p=7
Tenglamani yechish uchun p=0 va 5p-35=0 ni yeching.
5p^{2}-35p=0
Ikkala tarafdan 35p ni ayirish.
p=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -35 ni b va 0 ni c bilan almashtiring.
p=\frac{-\left(-35\right)±35}{2\times 5}
\left(-35\right)^{2} ning kvadrat ildizini chiqarish.
p=\frac{35±35}{2\times 5}
-35 ning teskarisi 35 ga teng.
p=\frac{35±35}{10}
2 ni 5 marotabaga ko'paytirish.
p=\frac{70}{10}
p=\frac{35±35}{10} tenglamasini yeching, bunda ± musbat. 35 ni 35 ga qo'shish.
p=7
70 ni 10 ga bo'lish.
p=\frac{0}{10}
p=\frac{35±35}{10} tenglamasini yeching, bunda ± manfiy. 35 dan 35 ni ayirish.
p=0
0 ni 10 ga bo'lish.
p=7 p=0
Tenglama yechildi.
5p^{2}-35p=0
Ikkala tarafdan 35p ni ayirish.
\frac{5p^{2}-35p}{5}=\frac{0}{5}
Ikki tarafini 5 ga bo‘ling.
p^{2}+\left(-\frac{35}{5}\right)p=\frac{0}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
p^{2}-7p=\frac{0}{5}
-35 ni 5 ga bo'lish.
p^{2}-7p=0
0 ni 5 ga bo'lish.
p^{2}-7p+\left(-\frac{7}{2}\right)^{2}=\left(-\frac{7}{2}\right)^{2}
-7 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{2} olish uchun. Keyin, -\frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
p^{2}-7p+\frac{49}{4}=\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{2} kvadratini chiqarish.
\left(p-\frac{7}{2}\right)^{2}=\frac{49}{4}
p^{2}-7p+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(p-\frac{7}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
p-\frac{7}{2}=\frac{7}{2} p-\frac{7}{2}=-\frac{7}{2}
Qisqartirish.
p=7 p=0
\frac{7}{2} ni tenglamaning ikkala tarafiga qo'shish.