Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

k^{2}-1=0
Ikki tarafini 5 ga bo‘ling.
\left(k-1\right)\left(k+1\right)=0
Hisoblang: k^{2}-1. k^{2}-1 ni k^{2}-1^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=1 k=-1
Tenglamani yechish uchun k-1=0 va k+1=0 ni yeching.
5k^{2}=5
5 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
k^{2}=\frac{5}{5}
Ikki tarafini 5 ga bo‘ling.
k^{2}=1
1 ni olish uchun 5 ni 5 ga bo‘ling.
k=1 k=-1
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
5k^{2}-5=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 5\left(-5\right)}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, 0 ni b va -5 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\times 5\left(-5\right)}}{2\times 5}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{-20\left(-5\right)}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
k=\frac{0±\sqrt{100}}{2\times 5}
-20 ni -5 marotabaga ko'paytirish.
k=\frac{0±10}{2\times 5}
100 ning kvadrat ildizini chiqarish.
k=\frac{0±10}{10}
2 ni 5 marotabaga ko'paytirish.
k=1
k=\frac{0±10}{10} tenglamasini yeching, bunda ± musbat. 10 ni 10 ga bo'lish.
k=-1
k=\frac{0±10}{10} tenglamasini yeching, bunda ± manfiy. -10 ni 10 ga bo'lish.
k=1 k=-1
Tenglama yechildi.