d uchun yechish
d=\frac{\sqrt{41}-9}{4}\approx -0,649218941
d=\frac{-\sqrt{41}-9}{4}\approx -3,850781059
Baham ko'rish
Klipbordga nusxa olish
5d^{2}+9d+5-3d^{2}=0
Ikkala tarafdan 3d^{2} ni ayirish.
2d^{2}+9d+5=0
2d^{2} ni olish uchun 5d^{2} va -3d^{2} ni birlashtirish.
d=\frac{-9±\sqrt{9^{2}-4\times 2\times 5}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9 ni b va 5 ni c bilan almashtiring.
d=\frac{-9±\sqrt{81-4\times 2\times 5}}{2\times 2}
9 kvadratini chiqarish.
d=\frac{-9±\sqrt{81-8\times 5}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
d=\frac{-9±\sqrt{81-40}}{2\times 2}
-8 ni 5 marotabaga ko'paytirish.
d=\frac{-9±\sqrt{41}}{2\times 2}
81 ni -40 ga qo'shish.
d=\frac{-9±\sqrt{41}}{4}
2 ni 2 marotabaga ko'paytirish.
d=\frac{\sqrt{41}-9}{4}
d=\frac{-9±\sqrt{41}}{4} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{41} ga qo'shish.
d=\frac{-\sqrt{41}-9}{4}
d=\frac{-9±\sqrt{41}}{4} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{41} ni ayirish.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
Tenglama yechildi.
5d^{2}+9d+5-3d^{2}=0
Ikkala tarafdan 3d^{2} ni ayirish.
2d^{2}+9d+5=0
2d^{2} ni olish uchun 5d^{2} va -3d^{2} ni birlashtirish.
2d^{2}+9d=-5
Ikkala tarafdan 5 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2d^{2}+9d}{2}=-\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
d^{2}+\frac{9}{2}d=-\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
d^{2}+\frac{9}{2}d+\left(\frac{9}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
d^{2}+\frac{9}{2}d+\frac{81}{16}=-\frac{5}{2}+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
d^{2}+\frac{9}{2}d+\frac{81}{16}=\frac{41}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{2} ni \frac{81}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(d+\frac{9}{4}\right)^{2}=\frac{41}{16}
d^{2}+\frac{9}{2}d+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(d+\frac{9}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
d+\frac{9}{4}=\frac{\sqrt{41}}{4} d+\frac{9}{4}=-\frac{\sqrt{41}}{4}
Qisqartirish.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}