Asosiy tarkibga oʻtish
d uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

5d^{2}+9d+5-3d^{2}=0
Ikkala tarafdan 3d^{2} ni ayirish.
2d^{2}+9d+5=0
2d^{2} ni olish uchun 5d^{2} va -3d^{2} ni birlashtirish.
d=\frac{-9±\sqrt{9^{2}-4\times 2\times 5}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 9 ni b va 5 ni c bilan almashtiring.
d=\frac{-9±\sqrt{81-4\times 2\times 5}}{2\times 2}
9 kvadratini chiqarish.
d=\frac{-9±\sqrt{81-8\times 5}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
d=\frac{-9±\sqrt{81-40}}{2\times 2}
-8 ni 5 marotabaga ko'paytirish.
d=\frac{-9±\sqrt{41}}{2\times 2}
81 ni -40 ga qo'shish.
d=\frac{-9±\sqrt{41}}{4}
2 ni 2 marotabaga ko'paytirish.
d=\frac{\sqrt{41}-9}{4}
d=\frac{-9±\sqrt{41}}{4} tenglamasini yeching, bunda ± musbat. -9 ni \sqrt{41} ga qo'shish.
d=\frac{-\sqrt{41}-9}{4}
d=\frac{-9±\sqrt{41}}{4} tenglamasini yeching, bunda ± manfiy. -9 dan \sqrt{41} ni ayirish.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
Tenglama yechildi.
5d^{2}+9d+5-3d^{2}=0
Ikkala tarafdan 3d^{2} ni ayirish.
2d^{2}+9d+5=0
2d^{2} ni olish uchun 5d^{2} va -3d^{2} ni birlashtirish.
2d^{2}+9d=-5
Ikkala tarafdan 5 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{2d^{2}+9d}{2}=-\frac{5}{2}
Ikki tarafini 2 ga bo‘ling.
d^{2}+\frac{9}{2}d=-\frac{5}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
d^{2}+\frac{9}{2}d+\left(\frac{9}{4}\right)^{2}=-\frac{5}{2}+\left(\frac{9}{4}\right)^{2}
\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{4} olish uchun. Keyin, \frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
d^{2}+\frac{9}{2}d+\frac{81}{16}=-\frac{5}{2}+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{4} kvadratini chiqarish.
d^{2}+\frac{9}{2}d+\frac{81}{16}=\frac{41}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{5}{2} ni \frac{81}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(d+\frac{9}{4}\right)^{2}=\frac{41}{16}
d^{2}+\frac{9}{2}d+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(d+\frac{9}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
d+\frac{9}{4}=\frac{\sqrt{41}}{4} d+\frac{9}{4}=-\frac{\sqrt{41}}{4}
Qisqartirish.
d=\frac{\sqrt{41}-9}{4} d=\frac{-\sqrt{41}-9}{4}
Tenglamaning ikkala tarafidan \frac{9}{4} ni ayirish.