a uchun yechish
a=\frac{\sqrt{53}+5}{14}\approx 0,877150706
a=\frac{5-\sqrt{53}}{14}\approx -0,162864992
Baham ko'rish
Klipbordga nusxa olish
5a^{2}-6a+1=12a^{2}-5a-6a
-6a ni olish uchun -a va -5a ni birlashtirish.
5a^{2}-6a+1=12a^{2}-11a
-11a ni olish uchun -5a va -6a ni birlashtirish.
5a^{2}-6a+1-12a^{2}=-11a
Ikkala tarafdan 12a^{2} ni ayirish.
-7a^{2}-6a+1=-11a
-7a^{2} ni olish uchun 5a^{2} va -12a^{2} ni birlashtirish.
-7a^{2}-6a+1+11a=0
11a ni ikki tarafga qo’shing.
-7a^{2}+5a+1=0
5a ni olish uchun -6a va 11a ni birlashtirish.
a=\frac{-5±\sqrt{5^{2}-4\left(-7\right)}}{2\left(-7\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -7 ni a, 5 ni b va 1 ni c bilan almashtiring.
a=\frac{-5±\sqrt{25-4\left(-7\right)}}{2\left(-7\right)}
5 kvadratini chiqarish.
a=\frac{-5±\sqrt{25+28}}{2\left(-7\right)}
-4 ni -7 marotabaga ko'paytirish.
a=\frac{-5±\sqrt{53}}{2\left(-7\right)}
25 ni 28 ga qo'shish.
a=\frac{-5±\sqrt{53}}{-14}
2 ni -7 marotabaga ko'paytirish.
a=\frac{\sqrt{53}-5}{-14}
a=\frac{-5±\sqrt{53}}{-14} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{53} ga qo'shish.
a=\frac{5-\sqrt{53}}{14}
-5+\sqrt{53} ni -14 ga bo'lish.
a=\frac{-\sqrt{53}-5}{-14}
a=\frac{-5±\sqrt{53}}{-14} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{53} ni ayirish.
a=\frac{\sqrt{53}+5}{14}
-5-\sqrt{53} ni -14 ga bo'lish.
a=\frac{5-\sqrt{53}}{14} a=\frac{\sqrt{53}+5}{14}
Tenglama yechildi.
5a^{2}-6a+1=12a^{2}-5a-6a
-6a ni olish uchun -a va -5a ni birlashtirish.
5a^{2}-6a+1=12a^{2}-11a
-11a ni olish uchun -5a va -6a ni birlashtirish.
5a^{2}-6a+1-12a^{2}=-11a
Ikkala tarafdan 12a^{2} ni ayirish.
-7a^{2}-6a+1=-11a
-7a^{2} ni olish uchun 5a^{2} va -12a^{2} ni birlashtirish.
-7a^{2}-6a+1+11a=0
11a ni ikki tarafga qo’shing.
-7a^{2}+5a+1=0
5a ni olish uchun -6a va 11a ni birlashtirish.
-7a^{2}+5a=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
\frac{-7a^{2}+5a}{-7}=-\frac{1}{-7}
Ikki tarafini -7 ga bo‘ling.
a^{2}+\frac{5}{-7}a=-\frac{1}{-7}
-7 ga bo'lish -7 ga ko'paytirishni bekor qiladi.
a^{2}-\frac{5}{7}a=-\frac{1}{-7}
5 ni -7 ga bo'lish.
a^{2}-\frac{5}{7}a=\frac{1}{7}
-1 ni -7 ga bo'lish.
a^{2}-\frac{5}{7}a+\left(-\frac{5}{14}\right)^{2}=\frac{1}{7}+\left(-\frac{5}{14}\right)^{2}
-\frac{5}{7} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{14} olish uchun. Keyin, -\frac{5}{14} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}-\frac{5}{7}a+\frac{25}{196}=\frac{1}{7}+\frac{25}{196}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{14} kvadratini chiqarish.
a^{2}-\frac{5}{7}a+\frac{25}{196}=\frac{53}{196}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{7} ni \frac{25}{196} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(a-\frac{5}{14}\right)^{2}=\frac{53}{196}
a^{2}-\frac{5}{7}a+\frac{25}{196} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a-\frac{5}{14}\right)^{2}}=\sqrt{\frac{53}{196}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a-\frac{5}{14}=\frac{\sqrt{53}}{14} a-\frac{5}{14}=-\frac{\sqrt{53}}{14}
Qisqartirish.
a=\frac{\sqrt{53}+5}{14} a=\frac{5-\sqrt{53}}{14}
\frac{5}{14} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}