Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}-6x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -6 ni b va 5 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
36 ni 20 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
56 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{14}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{14}+6}{-2}
x=\frac{6±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{14} ga qo'shish.
x=-\left(\sqrt{14}+3\right)
6+2\sqrt{14} ni -2 ga bo'lish.
x=\frac{6-2\sqrt{14}}{-2}
x=\frac{6±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{14} ni ayirish.
x=\sqrt{14}-3
6-2\sqrt{14} ni -2 ga bo'lish.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
Tenglama yechildi.
-x^{2}-6x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-x^{2}-6x=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+6x=-\frac{5}{-1}
-6 ni -1 ga bo'lish.
x^{2}+6x=5
-5 ni -1 ga bo'lish.
x^{2}+6x+3^{2}=5+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=5+9
3 kvadratini chiqarish.
x^{2}+6x+9=14
5 ni 9 ga qo'shish.
\left(x+3\right)^{2}=14
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{14} x+3=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.
-x^{2}-6x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -6 ni b va 5 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-1\right)\times 5}}{2\left(-1\right)}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36+4\times 5}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+20}}{2\left(-1\right)}
4 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{56}}{2\left(-1\right)}
36 ni 20 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{14}}{2\left(-1\right)}
56 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{14}}{2\left(-1\right)}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{14}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{14}+6}{-2}
x=\frac{6±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{14} ga qo'shish.
x=-\left(\sqrt{14}+3\right)
6+2\sqrt{14} ni -2 ga bo'lish.
x=\frac{6-2\sqrt{14}}{-2}
x=\frac{6±2\sqrt{14}}{-2} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{14} ni ayirish.
x=\sqrt{14}-3
6-2\sqrt{14} ni -2 ga bo'lish.
x=-\left(\sqrt{14}+3\right) x=\sqrt{14}-3
Tenglama yechildi.
-x^{2}-6x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
-x^{2}-6x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
-x^{2}-6x=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{-x^{2}-6x}{-1}=-\frac{5}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{6}{-1}\right)x=-\frac{5}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+6x=-\frac{5}{-1}
-6 ni -1 ga bo'lish.
x^{2}+6x=5
-5 ni -1 ga bo'lish.
x^{2}+6x+3^{2}=5+3^{2}
6 ni bo‘lish, x shartining koeffitsienti, 2 ga 3 olish uchun. Keyin, 3 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+6x+9=5+9
3 kvadratini chiqarish.
x^{2}+6x+9=14
5 ni 9 ga qo'shish.
\left(x+3\right)^{2}=14
x^{2}+6x+9 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+3=\sqrt{14} x+3=-\sqrt{14}
Qisqartirish.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Tenglamaning ikkala tarafidan 3 ni ayirish.