x uchun yechish
x\leq 19
Grafik
Viktorina
Algebra
5xshash muammolar:
5 ( \frac { x } { 5 } + \frac { 10 } { 2 } ) \geq 2 x + \frac { 30 } { 5 }
Baham ko'rish
Klipbordga nusxa olish
50\left(\frac{x}{5}+\frac{10}{2}\right)\geq 20x+2\times 30
Tenglamaning ikkala tarafini 10 ga, 5,2 ning eng kichik karralisiga ko‘paytiring. 10 musbat bo‘lgani uchun, tengsizlik yo‘nalishi o‘zgarmaydi.
50\left(\frac{x}{5}+5\right)\geq 20x+2\times 30
5 ni olish uchun 10 ni 2 ga bo‘ling.
50\times \frac{x}{5}+250\geq 20x+2\times 30
50 ga \frac{x}{5}+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
10x+250\geq 20x+2\times 30
50 va 5 ichida eng katta umumiy 5 faktorini bekor qiling.
10x+250\geq 20x+60
60 hosil qilish uchun 2 va 30 ni ko'paytirish.
10x+250-20x\geq 60
Ikkala tarafdan 20x ni ayirish.
-10x+250\geq 60
-10x ni olish uchun 10x va -20x ni birlashtirish.
-10x\geq 60-250
Ikkala tarafdan 250 ni ayirish.
-10x\geq -190
-190 olish uchun 60 dan 250 ni ayirish.
x\leq \frac{-190}{-10}
Ikki tarafini -10 ga bo‘ling. -10 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
x\leq 19
19 ni olish uchun -190 ni -10 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}