y uchun yechish
y=\frac{3\sqrt{195}}{5}+9\approx 17,378544026
y=-\frac{3\sqrt{195}}{5}+9\approx 0,621455974
Grafik
Baham ko'rish
Klipbordga nusxa olish
5y^{2}-90y+54=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 5\times 54}}{2\times 5}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 5 ni a, -90 ni b va 54 ni c bilan almashtiring.
y=\frac{-\left(-90\right)±\sqrt{8100-4\times 5\times 54}}{2\times 5}
-90 kvadratini chiqarish.
y=\frac{-\left(-90\right)±\sqrt{8100-20\times 54}}{2\times 5}
-4 ni 5 marotabaga ko'paytirish.
y=\frac{-\left(-90\right)±\sqrt{8100-1080}}{2\times 5}
-20 ni 54 marotabaga ko'paytirish.
y=\frac{-\left(-90\right)±\sqrt{7020}}{2\times 5}
8100 ni -1080 ga qo'shish.
y=\frac{-\left(-90\right)±6\sqrt{195}}{2\times 5}
7020 ning kvadrat ildizini chiqarish.
y=\frac{90±6\sqrt{195}}{2\times 5}
-90 ning teskarisi 90 ga teng.
y=\frac{90±6\sqrt{195}}{10}
2 ni 5 marotabaga ko'paytirish.
y=\frac{6\sqrt{195}+90}{10}
y=\frac{90±6\sqrt{195}}{10} tenglamasini yeching, bunda ± musbat. 90 ni 6\sqrt{195} ga qo'shish.
y=\frac{3\sqrt{195}}{5}+9
90+6\sqrt{195} ni 10 ga bo'lish.
y=\frac{90-6\sqrt{195}}{10}
y=\frac{90±6\sqrt{195}}{10} tenglamasini yeching, bunda ± manfiy. 90 dan 6\sqrt{195} ni ayirish.
y=-\frac{3\sqrt{195}}{5}+9
90-6\sqrt{195} ni 10 ga bo'lish.
y=\frac{3\sqrt{195}}{5}+9 y=-\frac{3\sqrt{195}}{5}+9
Tenglama yechildi.
5y^{2}-90y+54=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
5y^{2}-90y+54-54=-54
Tenglamaning ikkala tarafidan 54 ni ayirish.
5y^{2}-90y=-54
O‘zidan 54 ayirilsa 0 qoladi.
\frac{5y^{2}-90y}{5}=-\frac{54}{5}
Ikki tarafini 5 ga bo‘ling.
y^{2}+\left(-\frac{90}{5}\right)y=-\frac{54}{5}
5 ga bo'lish 5 ga ko'paytirishni bekor qiladi.
y^{2}-18y=-\frac{54}{5}
-90 ni 5 ga bo'lish.
y^{2}-18y+\left(-9\right)^{2}=-\frac{54}{5}+\left(-9\right)^{2}
-18 ni bo‘lish, x shartining koeffitsienti, 2 ga -9 olish uchun. Keyin, -9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-18y+81=-\frac{54}{5}+81
-9 kvadratini chiqarish.
y^{2}-18y+81=\frac{351}{5}
-\frac{54}{5} ni 81 ga qo'shish.
\left(y-9\right)^{2}=\frac{351}{5}
y^{2}-18y+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-9\right)^{2}}=\sqrt{\frac{351}{5}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-9=\frac{3\sqrt{195}}{5} y-9=-\frac{3\sqrt{195}}{5}
Qisqartirish.
y=\frac{3\sqrt{195}}{5}+9 y=-\frac{3\sqrt{195}}{5}+9
9 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}